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Summary of the report

This report gives an overview of the accomplishments of the AutoAl work package during the
TAILOR project. The report is divided into sections according to the tasks that are part of this
work package.

1. Introduction

As the practical applications of Al become more widespread, the need for skilled
professionals to design, calibrate and implement these techniques continues to grow. In the
field of AutoAl, research focuses on developing frameworks that automate the design,
calibration and training of Al models and methods. These frameworks are intended to be
reusable for various tasks, simplifying design processes and making Al more accessible to
scientists and specialised workers. In recent years, they have become particularly prominent
in the area of machine learning, where they are known under the label of AutoML, but also
hold significance for other areas of Al, such as automated reasoning, planning, scheduling
and optimisation.

Achieving the goal of a versatile, reusable framework presents several challenges. The first
is determining which steps of the process should be automated in the framework. Another is
how to ensure models and methods are robust and reliable and whether one wants to have
an internal alarm system for when Al systems or their components are "out of their depth”.
Another significant challenge is minimising overhead and compute costs. At the same time,
AutoAl can help achieve this by reusing information from previous tasks. Any AutoAl system
should be easily adaptable and extendable.

During the TAILOR project, this work package has aimed to work on these challenges and
make significant improvements. In this document, we provide a high-level overview of our
achievements, insights, algorithms and tools.

This report is structured as follows; Section 2 discusses the progress in Task 2, AutoML in
the wild; Section 3 looks at the progress in Task 3, Beyond standard supervised learning;
Section 4 discusses Task 4, Self-monitoring Al-systems; Section 5 highlights Task 5,
Multi-objective Auto-Al and finally Section 6 discusses Task 6 Ever-learning AutoAl.

2. AutoML in the wild [T7.2, ALU-FR]

Making AutoML practical in the wild necessitates pushing existing research methods and
ideas to become more practical, often through practical speedups or off-the-shelf tools. To
this end, we highlight some important advancements made towards bringing AutoML into the
wild.
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2.1 Hyperparameter Optimisation

A central part of many automated machine learning systems is to search for optimal settings
for a machine learning pipeline for a given user's scenario. One new novel technique
[MalikEtAIl23] simplifies a non-experts specification of a Bayesian Prior, effectively
incorporating a user’s prior knowledge of the problem into the search procedure. However,
even with this information, techniques incorporating Bayesian Optimization can often be
misconfigured, leading to underwhelming utility when applied in practice. To rectify this, there
are new self-adaptive techniques [HyarfnerEtAl23] to even further reduce the expertise
required to utilise these systems.

However, in the current age of large-scale Deep Learning (DL) and Generative Al, the cost
of utilising AutoML becomes prohibitive and requires novel solutions to solve these new
challenges. One such interesting work [AdriansenEtAIl23] utilises synthetic data as a prior,
essentially to train a single model, only once offline, that can cheaply predict the learning
curve of other deep-learning models. While similar techniques exist to solve this problem in
an online fashion, this method was found to be 10,000 times faster once trained, while
remaining re-usable across scenarios. From this, we developed a novel Hyperparameter
Optimization technique [RakotoarisonEtAIl24], that pushes us closer towards AutoML for
large-scale DL models.

2.2 Model Selection

While many large-scale DL models exist in the wild, very few have the capacity to train these
models from scratch, nor the expertise to do so. The primary method through which these
models are used is to select one from an ever-expanding pool and fine-tune them to a
specific application or need. Given the diverse variety of such models, it is not clear which to
select, let alone how to do so cost-effectively. By leveraging existing Algorithm Selection
techniques and a pool of pre-trained models to choose from, we developed a practical
method to greatly reduce cost and automate this process, lowering the expertise required to
effectively select the appropriate model [ArangoEtAIl24]. While this work was previously
applied in a research setting, we are pushing toward making an off-the-shelf tool available to
practitioners and industry.

We performed a comprehensive meta-learning study of data sets and methods for multilabel
classification (MLC). MLC is a practically relevant machine learning task where each
example is labelled with multiple labels simultaneously. Here, we analyse 40 MLC data sets
by using 50 meta features describing different properties of the data. The main findings of
this study are as follows. First, the most prominent meta features that describe the space of
MLC data sets are the ones assessing different aspects of the label space. Second, the
meta models show that the most important meta features describe the label space, and, the
meta features describing the relationships among the labels tend to occur a bit more often
than the meta features describing the distributions between and within the individual labels.
Third, the optimization of the hyperparameters can improve the predictive performance,
however, quite often the extent of the improvements does not always justify the resource
utilisation [BogatinovskiEtAl22].
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Furthermore, we developed a method for explainable and model-specific algorithm selection
for multi-label classification. Namely, a plethora of MLC algorithms have been proposed in
the literature, resulting in a meta-optimization problem that the user needs to address: which
MLC approach to select for a given dataset? To address this algorithm selection problem, we
investigate in this work the quality of an automated approach that uses characteristics of the
datasets - so-called features - and a trained algorithm selector to choose which algorithm to
apply for a given task. For our empirical evaluation, we use a portfolio of 38 datasets. We
consider eight MLC algorithms, whose quality we evaluate using six different performance
metrics. We show that our automated algorithm selector outperforms any of the single MLC
algorithms, and this is for all evaluated performance measures. Our selection approach is
explainable, a characteristic that we exploit to investigate which meta-features have the
largest influence on the decisions made by the algorithm selector. Finally, we also quantify
the importance of the most significant meta-features for various domains
[KostovskaEtAl22a].

2.3 Vertical Matchmaking

The use of Artificial Intelligence (Al) in industry has grown significantly. Techniques like Deep
Learning and optimization demand substantial computational and storage resources.
Choosing the right hardware (on-premise or cloud) and determining its capacity for Al
algorithms is crucial yet challenging, especially when quality-of-service constraints or
budgets are involved. The possibility of deploying Al models on a variety of hardware
devices with different computing resources according to specific computing tasks (e.g.,
performing inference with DNNs) makes the problem even more complicated, even for
experts. An automated decision support tool to match algorithms, user constraints, and
hardware resources would greatly benefit companies and practitioners. We proposed a
data-driven approach to assist Al adopters and developers in choosing the optimal hardware
resource and hyperparameters configuration of a given Al algorithm.

Our approach is based on three key elements: i) fair benchmarking of target Al algorithms on
a set of heterogeneous platforms, ii) the creation of ML models to learn the behaviour of
these Al algorithms, and iii) support guidelines to help identify the best deployment option for
a given Al algorithm.

We employ the Empirical Model Learning paradigm, which integrates Machine Learning (ML)
models into an optimisation problem. This approach combines expert domain knowledge
with data-driven models to learn the relationships between hardware requirements and Al
algorithm performance. We benchmark multiple Al algorithms on various hardware
resources to generate data for training ML models, then use optimization to find the best
hardware configuration that meets user-defined constraints like budget, time, and solution
quality [FrancobaldiEtAl23, De FilippoEtAl22].
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2.4 AutoML for Satellite Imagery

We developed a Neural Architecture Search (NAS) framework for super-resolution Earth
Observation (EO) satellite images. Satellites orbiting the Earth continually collect data about
our atmosphere, oceans, and land. These satellite images have many high-impact
applications with machine learning potential, like weather prediction, deforestation detection,
and crop monitoring. However, the effort required for manual design and configuration of
machine learning EO pipelines creates a bottleneck in our ability to create solutions for these
highly relevant problems. Therefore we make state-of-the-art machine learning models
accessible to EO domain researchers by automating the design of models for EO tasks. For
example, we developed a Neural Architecture Search (NAS) framework for super-resolution
for EO images. Super-resolution is a pre-processing step that increases the resolution of
satellite images. This is important for tasks where detailed information is highly relevant,
such as change detection. We propose a search space based on state-of-the-art
super-resolution networks. We demonstrate the adaptability of our approach on four satellite
image datasets, including a novel dataset we collected. Our approach, AutoSR4EQ, was
published in the Remote Sensing journal.

3. Beyond standard supervised learning [T7.2, ULEI]

3.1. AutoML for unsupervised learning via meta-learning

Unsupervised learning tasks, such as clustering and outlier detection, have long been
eluding AutoML research, since AutoML usually needs a ground truth (a golden standard) to
get a signal whether one model is better than another. This is usually not available in
unsupervised problems. However, human experts do not have difficulties proposing good
unsupervised learning algorithms based on prior experience. TUE developed a way to
emulate this via meta-learning. By recording the performance of (many variations of)
unsupervised techniques on many prior problems, we can recommend the best techniques
based on how similar a new problem is to prior ones. This similarity can be accurately
measured using ‘optimal transport’, a technique to measure the similarity between two data
distributions. Indeed, if two data distributions are very similar, then the same unsupervised
techniques will likely work well, which we also demonstrated empirically on large
benchmarks of unsupervised tasks. This novel approach was published in two papers for
different unsupervised tasks: for outlier detection at IJCAI 2023 [SinghVanschoren23a],
and for clustering at the NeurlPS 2023 workshop on optimal transport
[SingVanschoren23b].

3.2 Meta-learning for few shot learning

We developed empirical intuitions and insights on how various meta-learning and transfer
learning techniques worked, and why certain techniques outperform others in certain
situations. First, we surveyed the literature and described the existing methods in a common
framework. Additionally, we have gained an understanding why (despite its lower complexity)
the common method MAML outperforms the more expressive method Metalearner-LSTM,
and have presented a method that combines the best of both (at the cost of additional


https://www.mdpi.com/2072-4292/16/3/443

D

TAILOR Project No 952215, August 2024 D7.2 Automated Al v.2.
Dissemination level PU

runtime). Afterwards, we did an empirical study that compares various seminal methods (i.e.
MAML, Reptile and Transfer Learning) with each other across scenarios, and determines
when each of these methods is beneficial to use. Finally, we showed why vanilla LSTMs are
not good at few shot learning, and propose an architecture that can do this
[HuismanEtAI21, HuismanEtAI22, HuismanEtAl23, HuismanEtAl24].

3.3 MetaDL competition series

Finally, we ran a series of competitions, which we refer to as the MetaDL-competition series,
which was aimed to further advance the state-of-the-art in meta-learning research. The
series consisted of two competitions, i.e. a preliminary competition that ran in the fall of 2020
that was presented at AAAI 2021 [EIBazEtAl22a], and a version that ran across 2021, and
was presented at NeurlPS 2021 [EIBazEtAI22b]. These competitions formed the basis for
the Meta-Album benchmark suite, presented further. Competition reports:

4. Self-monitoring Al systems [T7.3, ULEI]

4.1. A comprehensive survey paper of AutoML

Automated machine learning (AutoML) is a young research area aiming at making
high-performance machine-learning techniques accessible to a broad set of users. This is
achieved by identifying all design choices in creating a machine-learning model and
addressing them automatically to generate performance-optimised models. In our recent
publication, we have provided an extensive overview of the past and present, as well as
future perspectives of AutoML [BaratchiEtAl24].

4.2. Algorithm-Agnostic Uncertainty Estimation

Detecting and signalling when a machine learning algorithm, such as a classifier, makes
erroneous predictions is of crucial importance for the development of trustworthy Al systems.
At the same time, most work on uncertainty estimation tends to be limited to a specific type
of predictor or only considers regression tasks. In this work, we present a flexible method for
estimating uncertainty in classification procedures using several, classifier-independent
measures that act as proxies for the uncertainty associated with predictions. Our approach
yields promising results on a variety of benchmark datasets and can be used alone or in
combination with the uncertainty estimates produced by the classifier [KonigEtAI20].

5. Multi-objective AutoAl [T7.4, INRIA]

5.1. A Multi-Objective AutoML Approach for Federated
Learning
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Federated learning is a training paradigm according to which a server-based model is
cooperatively trained using local models running on edge devices and ensuring data privacy.
Keeping private data in the edge devices is an important approach for people to trust in
federating learning. Edge and server devices exchange information that induces a
substantial communication load, which jeopardises the functioning efficiency. The difficulty of
reducing this overhead stands in achieving this without decreasing the model’s efficiency.
Many works investigated the compression of the pre/mid/post-trained models and the
communication rounds separately, although they jointly contribute to communication
overload. Our work aims at optimising the hyper-parameters of the federating learning
scheme by using a multi-objective formulation where both, the accuracy and the
communication overhead are simultaneously optimised.

In this paper [MorellEtAI22], we worked in a first approach using NSGA-II to tune the
quantisation, and sparsification of the models, as well as the number of communicating
rounds and the number of clients. A more advanced approach taking into account the
heterogeneity of the edge devices and tuning more parameters was published
[MorellEtAI24]. In this second work, the batch size, the learning rate, the aggregation
method, the decision of the information to send to the server, and the strategy to deal with
zeroes are also tuned during the optimization.

5.2. A Differential Method for Multi-Objective Neural
Architecture Search.

One evolving use case for Neural Architecture Search (NAS) to find well-performing models
that can also be deployed on edge devices, often subject to energy or hardware constraints.
However, these techniques are often cost-prohibitive, especially when considering an
ever-increasing number of objectives. To accelerate this procedure, we utilise the fact that
neural architectures consist of differentiable operations, to effectively explore the
Pareto-frontier of candidate models that are possible given a given search space
[SukthankerEtAl24]. This was showcased across 19 different hardware devices, both GPU
and CPU, as well as for 3 objective showcases, showing to outperform existing
multi-objective methods in this regime.

5.3 Enhancing Algorithm Selection and Performance Prediction
in Black-Box Optimization Using Landscape Features and
Machine Learning Techniques

We performed three studies to delve into enhancing the performance prediction and
selection of modular optimisation algorithms using various methodologies. The first study
explores the significance of landscape features in predicting the performance of modular
CMA-ES variants, revealing that although the most relevant features remain consistent
across different module configurations, their influence on regression accuracy varies. The
second study compares machine learning models for algorithm selection (AS) in black-box
optimization, demonstrating that while AS has impressive potential, the choice of the ML
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model (Random Forest, XGBoost, Transformers, etc.) has minimal impact on performance.
The third study introduces a methodology to distinguish easily solvable problem instances
from challenging ones based on an algorithm's performance footprint, linking these instances
to specific landscape properties using meta-representations and model explainability
techniques [NikolikjEtAl23, KostovskaEtAl23a, KostovskaEtAl22b].

5.4 OPTImization algorithm benchmarking ONtology

We focused on the development and application of ontologies for improving the
benchmarking and performance prediction of optimization algorithms. The first paper
introduces OPTION (OPTImization algorithm benchmarking ONtology), a semantically rich,
machine-readable data model designed to enhance the interoperability, automatic data
integration, and querying capabilities of different benchmarking platforms. By annotating and
querying benchmark performance data from the BBOB and YABBOB collections, and
integrating these into the IOHprofiler environment, OPTION facilitates meta-analysis of
performance data. The second paper builds on the OPTION ontology, extending it to
represent modular black-box optimization algorithms and creating knowledge graphs with
performance data for modCMA and modDE frameworks. Using a knowledge graph
embedding-based methodology, we demonstrate that triple classification can accurately
predict whether an algorithm instance will achieve a specific target precision, highlighting the
potential of this approach and calling for community collaboration on algorithm feature
representation [KostovskaEtAlI23b, KostovskaEtAl23c].

5.5 Hyperparameter Optimization for Robustness Verification

Despite their great success in recent years, neural networks are vulnerable to adversarial
attacks. These attacks are often based on slight perturbations of given inputs that cause
them to be misclassified. Several methods have been proposed to formally prove the
robustness of a given network against such attacks. However, these methods typically give
rise to high computational demands, which severely limit their scalability. Recent
state-of-the-art approaches state the verification task as a minimisation problem. These are
highly complex methods, solving instances of problems that have been proven to be
NP-hard. In this line of research, we developed automated hyperparameter optimization
methods, so that these methods are more efficient and can verify larger network types
[KonigEtAI21,KonigEtAI22,KonigEtAlI23,KonigEtAl24a,KonigEtAl24b] .

Other output modalities:

e Podcast episode: Jan van Rijn: Robustness, unveiling the black box of Al
(Computers Don’t Byte)

5.6 Neural architecture search focussing on accuracy and
robustness

Neural networks are vulnerable to slight alterations to correctly classified inputs, leading to
incorrect predictions. To rigorously assess the robustness of neural networks against such
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perturbations, formal verification techniques can be employed. Robustness is generally
measured in terms of adversarial accuracy, based on an upper bound on the magnitude of
perturbations commonly denoted as epsilon. This complicates the neural architecture search
to a multi-objective optimisation problem, where we not only want to optimise for accuracy,
but also for robust accuracy. Due to the complexity of this problem, we have not developed
methods that solve this multi-objective problem yet. However, we have developed measures
that can express these measures.

Some of these measures are:

e The critical epsilon values are a per instance measure for the degree towards
which an instance is robust. Critical epsilon values can be used to create
reliable so-called robustness distributions, that give an empirical distribution of
the robustness of a neural network across instances [BosmanEtAI23] with an
extended version under submission 2024.

e The robustness distributions can be further refined to not only take into consideration
robustness across all instances of a dataset, but also robustness on a per-class
level. This has important implications for label bias and in the long run also for
fairness-aware systems [BosmanEtAl24].

e The delta-values are a per-instance proxy for the critical epsilon values. While the
correlation with the critical epsilon value is low, it can be used to empower racing
methods to select a network from a set of options efficiently [KonigEtAl24c].

5.7 Streaming machine translation

Streaming Machine Translation (MT) is the task of translating an unbounded input text
stream in real-time. The traditional cascade approach, which combines an Automatic
Speech Recognition (ASR) and an MT system, relies on an intermediate segmentation step
which splits the transcription stream into sentence-like units. However, the incorporation of a
hard segmentation constrains the MT system and is a source of errors. We have proposed a
Segmentation-Free framework that enables the model to translate an unsegmented source
stream by delaying the segmentation decision until the translation has been generated.
Extensive experiments show how the proposed Segmentation-Free framework has better
quality-latency trade-off than competing approaches that use an independent segmentation
model [Iranzo-SanchezEtAl24].

6. Ever-learning AutoAl [T7.5, TU/e]

Many problems in trustworthy Al can only really be addressed by collaborating on a global
scale and by delivering high-quality tools that everyone can use. To gain adoption in
benchmarking, it is important to work together with the authors of all the leading algorithms
to make sure that they are used correctly and to test all methods on a very large set of public
datasets assembled together with the community. If the results are hard to dispute and



D

TAILOR Project No 952215, August 2024 D7.2 Automated Al v.2.
Dissemination level PU

accepted by the major stakeholders, a benchmark can quickly gain traction. Moreover, for
meta-learning, experiments need to be run across even larger sets of models and datasets,
which requires very careful organisation of all resources and results, something that no
single lab can do by itself. By building and working with the OpenML community, and
collaborating with other initiatives with shared goals, we were able to have much more
impact than would otherwise be possible. This is underscored by the following outcomes:

6.1 Benchmarks

OpenML Benchmarking Suites: A method to easily create new curated benchmarks

across many datasets under very specific constraints, so that the results are easily
interpretable and reproducible. Published at NeurlPS, and leading to many new benchmark
suites being proposed (27 of which are also on OpenML) [BischlEtAl21,UllahEtAl22] .

Moreover, these benchmarking suites have already led to more than 120 new papers, many
of which have very interesting and novel findings. For instance, these benchmarks showed
that tree-based models still outperform deep learning models on tabular data
[GrinsztajnEtAI22], which stimulated research into novel deep learning techniques,
especially transformer-based methods, for tabular data. Well-known examples of this are
[HolimannEtAI22], which use in-context learning on tabular data, and foundational
hypernetworks [MullerEtAI23], both of which reached state-of-the-art results on tabular
data.

The AutoML Benchmark: an extensible architecture to systematically benchmark AutoML
frameworks (built upon OpenML Benchmarking Suites). Adopted by 15 leading AutoML
frameworks, many of which are from industry, and contributed by the original authors. This
includes AutoGluon (Amazon), AutoSKLearn (U Freiburg), GAMA (U Eindhoven),
H20-AutoML (H20), ML.NET AutoML (Microsoft), Auto-XGBoost and MLR3AutoML (U
Munich), FLAML (Microsoft), MLUAR-AutoML (MLJAR), OBOE (Cornell), LightAutoML
(Sberbank Al), hyperopt-sklean (U Waterloo), and MLPIlan (U Paderborn). Published in
JMLR. Together with the ArXiv version, cited more than 320 times [GijsbersEtAl24].

Croissant: a meta-data format for machine learning datasets, making them more portable
and better described to allow easier exchange and usage. It is supported by OpenML,
HuggingFace, Kaggle, Google Dataset Search, and TensorFlow Datasets. Is it also being
adopted by Harvard Dataverse, and the NeurlPS conference is recommending it to be used
for all new datasets submitted to the conference. This work also won the best paper award
at the DEEM Workshop at SIGKDD 2024 [AkhtarEtAl24].

Finally, by reasoning about how human machine-learning experts use their experience
across many prior tasks, we learned how to apply meta-learning to solve problems in new
and interesting ways. To highlight a few:
e We can more accurately recommend unsupervised learning techniques (e.g. for
clustering and outlier detection) by estimating how similar new tasks are to older
tasks for which we know effective solutions [SinghVanschoren23]

10
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e We can more efficiently tune machine learning algorithms by pre-training a deep
learning meta-model that predicts which hyperparameters to try next.

e We can fine-tune models continually by replacing gradient descent with a
meta-learning transformer-based optimizer that learns which weights in the network
should be updated to learn fast, and which to leave untouched to avoid forgetting
previous tasks.

6.2 Towards AutoAl for Neurosymbolic Al

A prominent field that combines learning and reasoning is the field of neuro-symbolic Al
(NeSy), cf. WP 4, which combines logic, probability theory, and deep neural networks. Many
NeSy systems have properties that make them suitable for AutoAl: they are declarative in
nature, can combine multiple ML learning models, and generalise well between tasks.
However, the current state of the field is almost antithetical to the goals of AutoAl.
State-of-the-art systems are complex, have diverse interfaces, and often require
considerable effort from experts to deploy them onto new tasks. In fact, it is already
non-trivial to compare a wide variety of systems on a consistent set of benchmarks.

Researchers at the KU Leuven published two works to tackle this discrepancy
[VermeulenEtAL23]. In this work, the authors provide an overview and categorization of
popular state-of-the-art NeSy systems and a classification of the benchmarks they are
applied on. From these results, the authors conclude that the field of neuro-symbolic Al is
segmented and that each segment has its own set of benchmark tasks that is used for
evaluation, hindering a fair and complete comparison among systems. In this work, they
extend the experimental comparison towards what was missing in the literature, showcasing
the strengths and weaknesses of different types of systems.

One of the main issues in NeSy is that every system has its own unique syntax to represent
the knowledge used in the model [KriekenEtAL24]. In this work, the authors take a first step
towards providing a uniform representational language for neuro-symbolic knowledge, called
ULLER. It is an extension of first-order logic that includes special considerations NeSy
settings. The exact semantics of the language are also specified separately as the
semantics of these NeSy systems are not uniform.

One of the arguably most interesting classes of neurosymbolic architectures are systems
that perform program synthesis. Such architectures, given an input problem (e.g.
represented with a set of examples), synthesise a program in a bespoke Domain-Specific
Language (DSL) that expresses a solution to that given problem. The program obtained in
this way can be then executed, i.e. applied to the input problem in an attempt to solve it.
While program synthesis has been the subject of intense research for a few decades, it is
only in recent years that the progress in neurosymbolic systems made it more practically
feasible.

The PUT team published the following works that engage program synthesis

[BednarekKrawiec24]. In this paper, we propose a modular neural symbolic architecture for
solving abstract problems based on neural program synthesis and conduct a comprehensive

11
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analysis of decisions made by the generative module of the proposed architecture. At the
core of the method is a typed DSL designed to facilitate feature engineering and abstract
reasoning. In training, we use the programs that failed to solve tasks to generate new tasks
and gather them in a synthetic dataset. As each synthetic task created in this way has a
known associated program (solution), the model is trained on them in supervised mode.
Solutions are represented in a transparent programmatic form, which can be inspected and
verified. We demonstrate the performance of the method using the well-known Abstract
Reasoning Corpus benchmark by F.Chollet, for which our framework generates tens of
thousands of synthetic problems with corresponding solutions and facilitates systematic
progress in learning.

[KrawiecEtAl24] In this work, we proposed a neural symbolic architecture that uses a DSL
to capture selected priors of image formation, including object shape, appearance,
categorisation, and geometric transforms. We express template programs in that language
and learn their parameterisation with features extracted from the scene by a convolutional
neural network. When executed, the parameterized program produces geometric primitives
which are rendered and assessed for correspondence with the scene content and trained via
auto-association with gradient. We confront our approach with a baseline method on a
synthetic benchmark and demonstrate its capacity to disentangle selected aspects of the
image formation process, learn from small data, correct inference in the presence of noise,
and out-of-sample generalisation.

The experience acquired in this research activity can be transferred to AutoAl and AutoML
tasks. We are particularly interested in continuing this research direction by developing
AutoAl/ML methods that express ML/AI architectures as programs in a bespoke DSL, where
the instructions of the DSL implement composable processing steps used in Al/ML
architectures, like data preprocessing and cleaning, transformations of representations,
inference models and post-processing.

12
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7. Conclusions

During the TAILOR project, this work package has made significant progress in addressing
gaps within the AutoAl community. The impact of this effort is mirrored in the numerous
high-tier publications, such as "AMLB: an AutoML Benchmark" published at JMLR, and
prestigious best paper awards, such as the AAAI SafeAl Workshop best paper award for
“Critically Assessing the State of the Art in CPU-based Local Robustness Verification” .

Maijor challenges still remain. Technical aspects, such as ensuring ease of use and
accessibility of tools that embody all the basic research results achieved in this project, are
hard to develop. Convincing practitioners to use AutoAl tools, rather than creating complex
Al tools based on domain knowledge, has proven to be highly non-trivial. Working even
more closely together with practitioners and understanding domain-specific tasks will be
important for achieving higher TRLs than those targeted within TAILOR. Another issue is the
assurance of safety, robustness and fairness. A rudimental issue is the lack of generalisable
objectives for which Al models can be trained and tested. Much effort is currently being
invested by the community into progress in this direction, but as these topics are so
complex, more time, effort and resources will be needed to find generally accepted and
broadly usable solutions.

Overall, while substantial progress has been made, ongoing collaboration and innovation are
essential to fully realise the potential of AutoAl in Europe. As a result of the work within
TAILOR, the already strong European community in this area is clearly positioned for further
success, which we are deeply convinced will greatly contribute to the success of "Al made in
Europe".
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