
Foundations of Trustworthy AI – Integrating Reasoning, Learning and Optimization
TAILOR

Grant Agreement Number 952215

Integration of OpenML with AI4EU v.2
Progress Report

Document type (nature) Report

Deliverable No 11.4

Work package number(s) 11

Date 11 October 2024

Responsible Beneficiary #12, TU/e

Author(s) Joaquin Vanschoren

Publicity level Public

Short description OpenML is an open source platform for sharing
machine learning datasets, algorithms, and models.
We plan to interface OpenML with the AI on-demand
platform, so that OpenML resources are accessible
via AI on-demand and can be used in all AI
on-demand services. (See also Appendix 1)

History

Revision Date Modification Author

version 1 2024-10-11 - Joaquin Vanschoren

d, a second summary table on the second page, will be e.g.:

Document Review

Reviewer Partner ID / Acronym Date of report approval

Peter Flach UNIVBRIS, #16 09/10/2024

Fredrik Heintz LIU, #1 10/10/2024



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Table of Contents

1. Summary of the report 3
OpenML - AIoD integration 3
AIoD chatbot (Talk2AIoD) 4
OpenML chatbot 4
Research dissemination assistant (QuickRePost) 5

2. Approach 6
OpenML-AIoD integration 6

AIoD Connectors 6
Dataset access 7
Implementation 7
Using OpenML datasets 9

Chatbot development 9
Phase 1: Research and selection of NLP approaches 10
Phase 2: Implementation of the service and AIoD integration 16

Research dissemination assistant 16
Phase 1: Research and selection of NLP approaches 17
Phase 2: Implementation of the service and AIoD integration 20

3. Achieved results 21
OpenML-AIoD integration 21
OpenML Chatbot 24
AIoD Chatbot (Talk2AIoD) 25
Research dissemination assistant 28

4. Future work 31
OpenML-AIoD integration 31
OpenML Chatbot 31
AIoD Chatbot 32
Research dissemination assistant 32

Appendix 1: Text of the original deliverable 33

2



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

1. Summary of the report

We have integrated OpenML with the AI on-demand (AIoD)1 platform, which makes all
verified OpenML datasets (more than 5000) accessible in the AIoD catalogue and services.
Moreover, to ensure that these datasets are easy to use for a wide audience, we have
created several LLM interfaces (chatbots) that allow people to discover and use these
resources using natural language questions, and additional LLM dissemination tools that
make it easy for researchers to disseminate their work (especially papers) to a wide
audience, thus creating new incentives to share their work on the AIoD platform.

We created two LLM chatbots (one for AIoD and one for OpenML) that provide easy-to-use
and powerful search capabilities. The reason for creating two chatbots is that AIoD is still
under active development, while OpenML already has a large user base (over 300k users)
and extensive documentation. By creating a separate OpenML chatbot, we can explore
more advanced use cases, such as training the chatbot on documentation to answer more
advanced questions and generate code, and evaluate the chatbot implementation with a
large user base. As such, the OpenML chatbot serves as a technology pathfinder: lessons
learned can be easily transferred to the AIoD chatbot as the platform matures.

The integration of OpenML with the AIoD platform was part of the original TAILOR project.
The Large Language Model (LLM) work was performed based on funding made available
from the TAILOR Connectivity Fund and by collaborating with the HumaneAI project.

Below is an overview of the four main newly developed features and how they enhance the
AIoD platform.

OpenML - AIoD integration
This integration was made possible by the AIoD application programming interface (API),
which was co-developed with TU/e engineers based on experience developing the OpenML
platform. This API allows us to exchange AI resources, especially datasets and models,
between both platforms. This is done through an OpenML connector inside the AIoD
platform that can automatically import OpenML datasets. This allows AIoD users to:

● Discover and use 5750 OpenML datasets and 15862 OpenML ML models/pipelines
in the AIoD platform catalogue. New datasets and models added to OpenML will also
be imported automatically to AIoD

● Search these datasets and models in the AIoD ‘MyLibrary’ service, and add them to
their list of favourites

● Seamlessly use OpenML datasets in AIoD services such as ‘RAIL’ and ‘AI Builder’ to
train new models and run reproducible experiments.

● Build new services on top of the AIoD platform that use these datasets and models.

1 This deliverable originally mentioned the AI4EU platform, but this platform has been replaced by the
AI on-demand (AIoD) platform, developed in the AI4Europe project.

3



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

AIoD chatbot (Talk2AIoD)
The AIoD chatbot (currently called Talk2AIoD) will be available on the AIoD website and will
provide users an interface enabling them to get relevant information about the AIoD platform,
related services and resources available in the platform, through interaction in natural
language. This addresses the fact that users may find it difficult to understand what the AIoD
platform and related services can provide them. The chatbot will be made available through
the AIoD Marketing portal and potentially through other services. It can answer questions
based on the current information and resources in the AIoD Marketing portal. It also provides
advanced search capabilities that address some of the main challenges AI researchers face,
such as finding the right AI resources (e.g. dataset, model) for their goals. The enhanced
search utilises models specialised on semantic similarity modelling to retrieve relevant AI
Assets (more specifically, their metadata) available in the AIoD metadata catalogue based
on user query provided in natural language.

The AIoD chatbot currently supports:
● Guiding users through the website, and finding and aggregating website information
● Providing links to the AIoD webpages that were used as sources
● A conversation memory that allows natural interactions with the user
● Help users find datasets, publications, machine learning models, experiments,

educational resources available through mylibrary
● It supports function calling, e.g. fetching data from the AIoD catalogue
● Answer complex queries requiring multiple function calls

Its functionality has been evaluated in two user studies, quantitatively (n=108) and
qualitatively (n=12), and a technical evaluation comparing its functionality and energy
efficiency to web agents (paper submitted to CHI2025). Talk2AIoD was deployed on a server
to conduct these studies.

OpenML chatbot
The OpenML chatbot offers the same capabilities as the AIoD chatbot to OpenML users,
but also goes further and includes capabilities that will only be available on AIoD later. For
instance, it can generate Python code for downloading datasets, training models, and
running evaluations. This is possible because OpenML has extensive documentation. When
AIoD has similar documentation, we can bring the same capabilities to the AIoD platform.
The OpenML chatbot also serves as a pilot that allows testing on a wide user base (>300k
users).

The OpenML chatbot additionally supports:
● Searching for useful datasets in natural language, with very specific requirements

(e.g. ‘datasets on biodiversity with more than 10.000 examples’)
● Searching across multiple asset types at the same time (currently datasets and

models)
● Adapting the search result interface depending on the user query. For instance, if a

user asks for datasets of a certain size or with a certain number of features, this will
be detected and used to filter the search results better and adapt the user interface
(e.g. setting a filter in a table of results).

4



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

● Generating code examples on how to use OpenML datasets in machine learning
libraries (e.g. ‘how do I load the dataset X into PyTorch’)

● Answering general questions about how to use and contribute to the OpenML
platform

Research dissemination assistant (QuickRePost)
The LLM-based assistant for research dissemination (currently called QuickRePost) aims to
assist researchers with disseminating their research (especially research papers) on various
platforms like social media and posts. It's being implemented as a separate service that
utilises language models, LLMs and text processing to generate a draft of a social media
post that follows requirements set by the user (e.g. target audience, length and others). The
service will be integrated with AIoD authentication and authorization mechanism (Keycloak /
EGI Checkin) - in this way, the service aims to contribute to onboarding of new users to the
platform.

QuickRePost generates proposals for LinkedIn posts from the text of research papers. The
service enables users to upload a PDF file (with a limit of maximum file size), select
preferences, and generate a draft of the post. The service utilises two AI models - one model
for text summarization, the second one for generating a social media post based on a
summarised research paper and user requirements. The service is configurable and it can
be deployed with a compatible HuggingFace model for both text summarization and
generation. This improves the flexibility and reusability of the service as it can be deployed
with different models based on available hardware.

We thoroughly compared the performance of different open-source and closed-source
models (language models for text summarization and LLMs for generation) and their ability
to generate social media posts that meet user requirements. We tested and fine-tuned the
prompts used to instruct the LLMs to generate social media posts (human testing and
automated testing) and created a mechanism to dynamically compose prompts based on
user requirements.

We implemented and deployed the initial version of an application on a testing server, to be
tested by the first users.

5



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

2. Approach

OpenML-AIoD integration
The OpenML-AIoD integration is implemented2 through an AIoD connector. These
connectors are a feature of the AIoD architecture that provides access to AI resources that
are physically hosted on existing infrastructure, without the need to move or duplicate these
resources.

AIoD Connectors
As illustrated in Fig.1, the AIoD architecture in built on a set of ‘root nodes’ (in blue) which
each have a copy the AIoD metadata catalogue, a database with meta-data on all known AI
resources, such as datasets, models, papers, educational resources, and many more. Most
current AI resources are available on a rich ecosystem of AI platforms (in red), OpenML
being one of them, and it doesn’t make sense to duplicate these resources. The difficulty is
that each platform makes its resources available in different ways, with different meta-data
and with different levels of organisation. The AIoD platform aims to offer a unified view on all
these resources. The task of AIoD connectors is to index AI resources available on existing
platforms, provide uniform metadata for all of them, and store this in the AIoD meta-data
catalogue. They are continuously run on AIoD root nodes and will poll platforms to learn
about updates on the available resources. After helping to set up this architecture, we have
implemented such a connector for OpenML. It will regularly poll OpenML to get all the latest
datasets and make them available to the AIoD platform and all its services, including
third-party services anywhere that interface with the AioD API (leaf nodes).

Fig. 1: AIoD physical architecture

2 The code can be found on https://github.com/aiondemand/AIOD-rest-api/tree/develop/src/connectors

6



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Dataset access
How OpenML datasets can be accessed from AIoD is illustrated in more detail in Fig. 2.
Central in this figure in the metadata catalogue. The OpenML connector will poll the OpenML
platform via its API to get the latest updates on OpenML datasets, and post these updates to
the metadata catalogue. Other similar connectors exist for HuggingFace and Zenodo. When
AIoD services need access to datasets, they consult the metadata catalogue. For any
dataset in the catalogue, it will provide a reference to where the dataset is physically stored
(i.e. on OpenML for OpenML datasets) and information on the dataset structure and format.
The services can then download the datasets directly from OpenML and use them as they
wish. For instance, they could evaluate models on hundreds of OpenML datasets at once, or
they could analyse OpenML datasets for biases.

Fig. 2: AIoD access to data and compute

7



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Implementation
The integration occurs through the OpenML API (programming interface), which offers a
Python client. This is illustrated in Fig.3. The client can be very easily installed (e.g. via PIP),
and imported in any python code. Then, as illustrated, one can list all datasets, download the
metadata by ID or name, and download the data itself directly into useful data structures.

Fig. 3: OpenML Python interface

When the dataset meta-data is fetched from OpenML, the connector will store it in the
metadata catalogue via the AIoD REST API.3 The REST API is illustrated in Fig. 4a and 4b.
One can list, download, and upload datasets, even directly from their original platforms. We
zoom in on the ‘PUT’ method. Here, a fraction of the metadata is shown that must be
provided to register a new dataset, such as the name, origin, version, data, author, licence,
and application areas.4

Fig. 4a: AIoD REST API: endpoints for listing, retrieving, editing, and deleting datasets.

4 For the complete documentation, please see https://api.aiod.eu/docs

3 As of August 2024, AIoD also has a Python interface. Hence, it would make sense to update the
OpenML connector to use that instead of calling the REST API directly. This will simplify maintenance.

8

https://api.aiod.eu/docs


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig. 4: AIoD REST API: meta-data returned for specific datasets.

Using OpenML datasets
The user interaction diagram of the OpenML integration is shown in Fig. 5. As shown, any
user can ask the AIoD API to list datasets, which are then looked up in the catalogue
database and returned to the user. These datasets can be anywhere, on the AIoD platform
itself, but also on OpenML, HuggingFace, Zenodo, or any other connected platform. When
the user requests a specific OpenML dataset, the AIoD API will fetch the information from
the database, detect where it is hosted, download the metadata (or actual data) from the
resource provider (i.e. OpenML), potentially combine it with other known metadata, and
return it to the user.

Users will typically be unaware of this complexity as it is entirely hidden. They can access
any OpenML dataset with a single line of code, or through a graphical interface or any other
AIoD service, without having to worry about where the data is hosted and how to discover
and access it. These higher-level interfaces are discussed in section 3.

9



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig. 5: UML diagram of the OpenML connector

Chatbot development
Within project AI4Europe, finding the relevant AI assets (e.g. models, datasets) was
identified as one of the crucial and most challenging activities AI researchers do. Currently,
the AIoD provides a fulltext search for selected AI Assets through its REST API and in the
service MyLibrary. Although fulltext search provides value to the end users, it’s often the
case that the users are not able to precisely formulate the search queries so that relevant
assets are retrieved as expected.

In this project, we aim to enable users to search for relevant assets in a more descriptive
way by combining semantic search and Retrieval Augmented Generation (RAG). Semantic
search uses LLMs to enable users to formulate their queries loosely (e.g. semantic search
should be robust enough to retrieve an asset containing images of “trees” even if the user's
query contains the word “forest”). RAG first retrieves relevant information from a database
using a query generated by the LLM. This information is then integrated into the LLM's query
input, enabling it to generate more accurate and contextually relevant text.
We split the work on AIoD enhanced search capabilities service into two phases:

● Phase 1: Research of relevant NLP approaches, testing and selection of models;
● Phase 2: Implementation of the service and its integration with the AIoD platform;

Phase 1: Research and selection of NLP approaches
Recent advances in NLP enable us to select from a wide range of available open- and
closed-source models that can be used to implement semantic search on top of the AIoD
platform. The challenging part is to select the right model and text processing procedure that
result in best performance on particular data, as the form, content and distribution of the
data, as well as the type of user queries, have significant impact on the overall performance.

10



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

If we extend the aforementioned even further, not only for the AIoD metadata catalogue itself
we need to select the right model(s), but we could also potentially want to select a best
performing model for every individual AI Asset type. An argument supporting this assumption
is that different asset types are described by different properties (e.g. Datasets vs.
Educational resources), resulting in a different textual representation. Although this is a valid
point, having different models for different assets would introduce (potentially significantly)
increased computational requirements on the run of the service. Therefore, we decided to
use one model that can be assumed to work sufficiently well for different types of AI Assets.
Due to the limited time frame of this activity and to speed up the experimentation, we
decided to constrain the set of AI Asset types we experimented with to Datasets.

Fig. 6a: Enhanced search, experimentation setup. First, we downloaded all Datasets from
the AIoD metadata catalogue and transformed them into textual representation. Then, we
computed vector embeddings with different models in order to thoroughly compare
performance of different models. The goal was to select the right model to be used to
implement a semantic search service.

The experimentation setup can be seen in Fig. 6a. First, we downloaded a snapshot of all
Datasets from the AIoD metadata catalogue, available through its REST API, to a local
database. For experimentation we used ChromaDB.

Next, individual datasets, which are represented as documents (JSON structure) in the AIoD
metadata catalogue, were transformed to textual representation. We experimented with two
different representations:

11



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

1. All relevant fields/properties of a datasets were joined to create the textual
representation. This representation was longer and contained more information. This
technique achieved in general better performance.

2. Only “basic” properties of the dataset were joined, namely its name, description, tags
and the platform the datasets originated from. This resulted in shortened
representation.

Later, we compared these two forms with the goal to test which form results in better vector
embeddings.

Fig. 6b: Comparison of two forms of textual representation of a Dataset.

As the next step, we computed vector embeddings for all documents in the database. The
candidate models, GTE, E5 and BGE (different sizes of these) were selected based on
literature overview, the current leaderboards, empirical experience and model size. With
every model, we computed two different vector representations for each Dataset - one for
“relevant fields” and one for “basic fields” textual representation. As many texts were longer
than the maximal context length of the models under test, we needed to chunk such texts
and work with embeddings of individual chunks. Here, we tested two techniques:

1. We combined the embeddings of individual chunks of a text into one aggregated
vector representation of the Dataset.

2. In the retrieval phase, we retrieved individual chunks. Then, if one chunk from a
Dataset was retrieved, we considered the whole Dataset to be a match. This
technique achieved in general better performance.

For effective evaluation, the embeddings were stored in a specialised vector database. We
compared two vector databases in terms of performance and ease of use. For the first,
experimentation-oriented phase, we selected ChromaDB as it’s easier to set up and use.

12



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Despite being sufficient in this phase, for implementation of the service (Phase 2) we
decided to use MilvusDB as it, based on experimental results, achieved better performance.

After computing and storing vector representations of all datasets, we conducted an
extensive set of experiments where we compared all potential combinations of models,
json-to-text transformations and chunking strategies in order to discover the combination that
provides best overall results in the retrieval task based on semantic similarity between user
query and a document (Dataset). The overall evaluation setup can be seen in Fig.7:

1. Query generation.
2. Retrieval evaluation.

Current state of AIoD enhanced search capabilities service:
● We thoroughly evaluated different embedding models (GTE, E5, BGE) to select the

right model for computing vector embeddings enabling implementation of semantic
search. Based on the evaluation, we selected the “GTE large” model to be used as
the backbone of semantic search.

● We thoroughly evaluated different forms of data preparation and text preprocessing.
As the models aimed to be used are only able to compute embeddings from text
data, the AI Assets, represented as structured information in the AIoD platform, need
to be transformed to a textual representation. We examined different ways how to
transform structured data to text (the main difference being what properties of the AI
Assets should be used to compute embeddings in order to achieve best retrieval
results).

● We implemented complex evaluation pipelines, examining individual variables
entering the search pipeline (models, text processing). The pipelines focused on a
specific type of AI Assets available in AIoD - Datasets and provided insights (different
metrics) enabling us to select the preferred configuration.

● We computed embeddings of all currently available Datasets.
● We prepared an implementation plan for implementing a separate service, which is to

be executed in the following months.

13

https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 7: Evaluation setup. To evaluate the performance of semantic search (retrieval), first, we need to collect a sufficient number of relevant testing queries. The
queries were generated by using LLMs, either directly or through the Ragas.io tool. In the evaluation phase, we evaluated the performance in terms of recall (whether
documents we expected should be retrieved were retrieved by a query) and precision (how many of top K retrieved documents were considered relevant by an LLM).

14



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

There are two main approaches to evaluation of retrieval task performance: automated and
manual evaluation. In the manual approach, a human expert would query the model and
assess the quality of the presented results. This has two downsides; it is very time
consuming, and it is hard to assess whether there are good matches in the database which
are not presented to the user. So, in this activity we focused on automated evaluation as it
enabled us to thoroughly and fairly compare different retrieval settings.

For automated retrieval evaluation, it’s necessary to have a set of evaluation queries. Then,
we test whether a particular query retrieved the documents it was expected to retrieve, or, in
other words, whether the documents retrieved by the query can be considered relevant. For
this, we need to have a large amount of labelled examples to assess the models. We
considered both labelling manually, and using LLMs to assist in this task. We first did a
small-scale experiment to assess the quality of LLM-generated labels. In our experiment, we
selected a subset of 100 datasets, each labelled manually with topics based on the dataset
description, title, features, and meta-features by multiple human experts. We then also
generated labels with an LLM. We found that while the LLMs still seemed slightly less
accurate and had slightly more disagreement with the humans than the humans did amongst
themselves, the difference was small and likely not significant given the small sample size.
Hence, in our evaluations we relied more heavily on LLM-generated data.

In order to have a high amount of sufficiently variable queries, we generated the testing
queries automatically by using LLMs either with or without a Ragas tool. We generated two
types of queries:

● Detailed queries tied to specific assets. To generate these queries, LLMs and
Ragas (which internally uses LLMs) were fed a text representation of a Dataset and
were instructed to generate a set of questions/queries that, if used for retrieval tasks,
were expected to retrieve this particular dataset. In this way, we generated a large
amount of (query, asset) pairs. In the evaluation phase, if the generated query was
used, we tested if the asset from which the query was generated was retrieved.

● Generic search queries. These queries were generated automatically by LLMs. The
LLMs were instructed to generate queries that users of the platform could use to
retrieve datasets from the AIoD metadata catalogue (i.e. pretend to be users of the
platform). We generated three types of such queries: least descriptive, moderately
descriptive and most descriptive (see Fig. 8).

○ Least descriptive: A concise user query, up to 70 characters, capturing only
the essential and most significant properties of the dataset.

○ Moderately descriptive: A detailed user query, up to 200 characters, providing
additional information and properties to offer a clearer description of the
dataset.

○ Most descriptive: A comprehensive user query, up to 500 characters,
encompassing a wide range of details and characteristics to thoroughly
describe the dataset.

15



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 8: Examples of LLM-generated generic search queries with various descriptiveness.
In general, we evaluated the retrieval in terms of precision and recall.

To estimate recall, we utilised detailed queries tied to specific assets. For every query we
retrieved top K Datasets from the vector database and we evaluated whether datasets
expected to be retrieved were retrieved among these top K. It’s important to note that this is
only an estimate of how well a model (or, rather, a semantic search based on this model)
recalls relevant datasets - as we don’t know how many datasets in the whole Metadata
catalogue are in fact relevant for a particular query, we were only able to measure if the
datasets we explicitly expected (i.e. those from which the queries were generated) to be
retrieved were retrieved.

To estimate precision, we utilised both detailed queries tied to specific assets and
generic search queries. The difficulty of estimating precision lied in the fact that we had no
ground-truth labels (annotated by humans) telling us whether a particular Dataset is relevant
and therefore should have been retrieved by a query. To address this issue, we utilised an
LLM to estimate whether every single Dataset from the top K Datasets retrieved for a query
should be considered really relevant and therefore were retrieved correctly. For this, we used
the current (presumably) strongest large language model - GPT-4o. To increase the chance
that the LLM provides correct estimate whether a Dataset is relevant to a particular query,
we instructed the model not only to provide a prediction, but also:

● To provide Explanation (why is the dataset relevant to a query?);
● To provide Relevance score. The model was instructed to estimate relevance of an

asset to the query on a scale 1-5 with following meaning:
○ 1 = Not relevant at all
○ 2 = Slightly relevant
○ 3 = Moderately relevant
○ 4 = Very relevant
○ 5 = Extremely relevant

● To tell whether the conditions given by the user in the query were satisfied. The
conditions (e.g., “the dataset must have at least 10000 samples”) are automatically
identified by the LLM.

The complete prompt is shown in Figure 9.

16



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 9: System prompt used to instruct the LLM how to evaluate the relevance of a
document to an input user query.

Phase 2: Implementation of the service and AIoD integration
In the second phase, we started the implementation of the search service. The service will
provide a REST API through which users can search different types of AI Assets available in
the AIoD metadata catalogue by using queries in natural language.

The service will be periodically synchronised with the AIoD platform to be able to find newly
added AI Assets. See section Future work for more details.

Research dissemination assistant
Dissemination of research work and research results is an important part of researchers’ job.
It increases the overall awareness of new research findings in various communities, from
experts in the field through fellow researchers from other fields to general public.Despite
being important, researchers often neglect propagation of their own research as it may
require a lot of effort to prepare a high-quality material that in a couple of paragraphs (or
even sentences) summarises the main points of their work in a way that’s not only
understandable to experts, but also to lay people.

We address this challenge by creating a service that helps researchers to draft a social
media post (later, it will be extended to a regular, more extensive blog post) from a
research paper. In the background, the service utilises current NLP methods, namely
summarization language models and large language models (LLMs).

17



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Similarly to AIoD enhanced search capabilities service, we followed a two-phase process:
● Phase 1: Research of relevant NLP approaches, testing, model selection and prompt

tuning and parametrization;
● Phase 2: Implementation of QuickRePost application;

Phase 1: Research and selection of NLP approaches
The goal of this phase was to create an NLP pipeline that transforms a text of a research
paper, extracted from a PDF file, to a draft of a post. In this initial phase, we focused on a
social network for professionals, LinkedIn. We thoroughly compared the performance of
different open-source and closed-source models (language models for text summarization
and LLMs for generation) and their ability to generate social media posts that meet user
requirements. We tested and fine-tuned the prompts used to instruct the LLMs to generate
social media posts (human testing and automated testing) and created a mechanism to
dynamically compose prompts based on user requirements. In summary, in this phase we
needed to:

● Create a parameterizable prompt for the LLM.
● Define a set of parameters and their possible values that enable users to define

how the desired post should look like.
● Compare performance of different open-source and closed-source LLMs;
● Design the final pipeline to be integrated into the application;

Create a parameterizable prompt for the LLM
The main purpose of the prompt is to instruct the LLM to generate a specific type of social
media post from a textual representation of a research paper, and to specify desired
properties of the post. The properties are selected by the user and injected into the
parameterizable prompt.

We experimented with various forms of prompts and various language models. In the initial
phase, we manually evaluated several posts generated from research papers by different
LLMs (LLAMA3-8b, LLAMA3-70b, Mistral). We conducted several refinement rounds during
which we both quantitatively and qualitatively evaluated the generated posts and iteratively
refined the prompt, as illustrated in Fig 12 and Fig 13. The output of this step was a refined
prompt that was later parameterized.

Define a set of parameters and their possible values that enable users to define how
the desired post should look like
In order for the users to be able to define how the post should look like, we decided not to
build the application with one predefined fixed prompt. On the other hand, to increase the
chance that the LLM generates a high-quality post for a selected social network, we also
decided not to leave the users complete freedom in how they instruct the LLM. Therefore,
we decided to utilise parameterizable prompts.

18



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 12: Several examples of prompts used in the first phase of this step. The results were
manually evaluated.

Figure 13: Prompt evaluation and refinement

We defined a scaffold of a prompt that contains all the basic instructions instructing the LLM
to create a specific type of a post (that was fine-tuned in the previous step). Then, in the
application, the user can define various properties of the post like target audience, length of
the post or whether the post should include hashtags. All these choices influence the post
generated by the LLM. The parameterizable properties were consulted with marketing
experts with the goal to select a limited set of properties that may have the highest impact on
the quality and potential reach of the post, with the goal to not overwhelm the user with too
many properties to be set. See Fig. 14 for an example of these settings.

19



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 14: Users can select various parameters/properties of the post. These are fed as an
input to the LLM (together with the text of the paper and basic prompt), influencing the
generated post.

20



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Compare performance of different open-source and closed-source LLMs
We thoroughly compared the performance of different open-source and closed-source
models (language models for text summarization and LLMs for generation) and their ability
to generate social media posts that meet user requirements.

The generally observed trend was that bigger and more recent models, like LLAMA 3.1 -
70b, generated higher-quality posts and more precisely followed the instructions (i.e.
properties of the post selected by the user) than smaller models. Although this advocates in
favor of not considering smaller models to be deployed as the backbone of the service, there
is one important consideration to be taken into account - computational requirements. For
instance, LLAMA 3.1 - 70b requires a rather powerful and expensive GPU (or even multiple
GPUs) to run smoothly. Therefore, we also tested smaller LLMs with the conclusion that in
many cases the quality of generated posts is decent. As described in the following
subsection Phase 2: Implementation of QuickRePost application, we implemented the
service to be deployable with models of different sizes.

Design the final pipeline to be integrated into the application
Although the text of the paper can be directly fed as an input to the LLM, there are two
serious limitations we needed to address:

● If the paper is long, its length may be longer than the maximal context length
supported by the selected LLM (it also needs to be taken into account that the
prompt itself requires to be fed to the model). This may result in fitting only a part of
the paper to the model.

● Due to the nature of current LLMs, longer inputs take more time to be processed.

Therefore, we proposed a two-step approach. Instead of feeding the text representation of
the paper directly into the LLM, we first summarise the paper with a smaller and
computationally less expensive text summarization model with decoder-only transformer
architecture bart-large-cnn. For testing purposes or when the service is deployed on a
low-resource hardware, we used mode from Falconsai.

Phase 2: Implementation of the service and AIoD integration
In the second phase, we implemented a frontend-backend web application that provides a
convenient user interface. The service utilises two AI models - one model for text
summarization, the second one for generating a social media post based on a summarised
research paper and user requirements.

The service is configurable and it can be deployed with a compatible HuggingFace model for
both text summarization and generation. This improves the flexibility and reusability of the
service as it can be deployed with different models based on available hardware.

Technology-wise, the service was implemented in Python and in framework Gradio which
provides sufficient functionalities for multi-user applications (e.g. queueing system) and
makes development of simple front ends easier. The first version of the application was
implemented in a different framework, Streamlit, which was abandoned due to issues with
asynchronous operations.

21

https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/Falconsai/text_summarization
https://www.gradio.app/


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

3. Achieved results

OpenML-AIoD integration
OpenML datasets are easily discoverable in the AIoD catalogue and directly usable within
services built on the AIoD API. We will highlight the most salient ones: MyLibrary, AI Builder,
and RAIL, but any new services built on AIoD will also have access to all OpenML datasets.

MyLibrary
All OpenML datasets can be easily discovered on the AIoD platform via the AI resources
search (called MyLibrary), as illustrated in Fig. 15. The interface also offers a dropdown that
allows users to search OpenML datasets specifically. Selecting a dataset card will show all
the details exported from the OpenML API, including the original authors, source, keywords,
and full description. An example is shown in Fig. 16.

Fig 15. OpenML datasets can be found and accessed in the AIoD catalogue (MyLibrary)

Fig 16. Dataset detail for one of the OpenML datasets on AIoD.

22



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

AI Builder
OpenML datasets can be imported directly into the AI Builder, a no-code environment in
which AI models can be created by connecting datasets and models on a canvas. It has its
own Marketplace, where all OpenML dataset can be found under ‘Data Sources’, shown in
Fig. 17. From there, they can be imported and pipelines on the AI Builder canvas, illustrated
in Fig. 18. Further guides can be found in the AI Builder documentation.5

Fig 17. OpenML datasets can be found and accessed in the AI Builder

Fig. 18 Using datasets in pipelines on the AI Builder canvas.

RAIL
RAIL is an AIoD service aiming to simplify large-scale experimentation and benchmarking.
The user only needs to select datasets, models, and experiment variables. The user
interface is shown in Fig. 19. Here, ‘diabetes’, is a dataset imported from OpenML, and a
simple experiment is shown evaluating kNN classifiers on this dataset. In the background,
docker containers and scripts are created that will execute the experiments in any
computational environment (e.g. a HPC center), and return the results. The template for
doing this is illustrated in Fig. 20. It includes the environment (here it will install and import
OpenML and scikit-learn), and the script that is generated to run the experiment.

5 https://gitlab.eclipse.org/eclipse/graphene/tutorials/-/tree/main/openml_data_integration

23



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig. 19. Using OpenML datasets in RAIL experiments.

Fig. 20. An experiment template based on OpenML datasets in RAIL.

24



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

OpenML Chatbot
We developed a simple query interface allowing users to answer any questions, shown in
Fig. 21. It is now running on the OpenML test server and accessible to beta users.

Fig 21. Example OpenML chatbot interaction: looking for relevant training datasets.

25



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

The interface consists of a standard query textbox, with some additional options. It is
possible to specify what kind of resource the user is looking for (e.g. a dataset or a model),
as well as the option to filter results automatically based on the query. For instance, if the
user says she is looking for ‘large datasets’, the chatbot will only return the largest datasets
and order them from large to small. In the final interface, these options may be hidden.

As shown in Fig. 21, when the user indicates that she is looking for datasets, the result will
be a table that lists the most relevant datasets together with relevant metadata that the user
can further filter and sort on. The figure also shows how users can easily rephrase their
query based on earlier results.

If the user is interested in better understanding how to use an OpenML dataset, the chatbot
will provide detailed information on the various ways to do this. It will also generate and
explain code that users can copy-paste to include OpenML datasets in their projects. This is
illustrated in Fig. 22, where step-by-step instructions are given on how to download datasets
in Python. In the same vein, the chatbot can explain how to import datasets into libraries like
PyTorch and TensorFlow, and how to train and evaluate models. This allows novice users to
easily train new AI models without advanced programming experience, and allows advanced
users to include OpenML datasets in new services and more complex projects.

The current version of the chatbot is based on LLAMA 3.1 and LangChain, running inference
on a single GPU. We have set up an API to which queries can be submitted and the final
responses are returned in real time. All code is available online.6

AIoD Chatbot (Talk2AIoD)
In the first phase of AIoD chatbot development, we evaluated different semantic search
configurations and final configuration is fully implemented. Based on thorough evaluation
(see section Approach) and experimental results, the following configuration of semantic
search will be implemented in the second phase:

● Text representation: Use all relevant properties of an AI Asset
● Model: GTE-large (https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5)
● Chunking: Retrieve individual chunks (don’t aggregate embeddings of individual

chunks of a document). If one chunk from a document is retrieved, the whole
document is retrieved.

The main technologies used for implementation of the first phase are:
● Language: Python 3
● Experimentation environment: Jupyter notebooks, Python scripts
● HuggingFace: https://huggingface.co/
● LangChain: https://www.langchain.com/
● OpenAI API: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference
● OLLAMA: https://ollama.com

6 https://github.com/openml-labs/ai_search

26

https://www.llama.com/
https://www.langchain.com/
https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
https://huggingface.co/
https://www.langchain.com/
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference
https://ollama.com/


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig 22. Example OpenML chatbot interaction: getting code to download datasets in Python

27



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

The user interface for the AIoD chatbot is a simple and easy-to-use query-reponse interface,
shown in Fig. 23. Examples of more advanced user queries and the raw structured outputs
returned by the LLM are shown in Fig. 24 and 25. These will be integrated into the graphical
interface soon.

Fig 23. Example AIoD chatbot interaction.

Figure 24: An example of a user query (general) and a retrieved Dataset textual
representation.

28



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Figure 25: Structured output provided by an LLM. Besides relevance_rating, the output also
provides an overall evaluation of the match and an explanation of how well the dataset
meets individual conditions given in the query by the user. The conditions were automatically
extracted from the query by the model. Such an evaluation approach is more transparent
and provides better overall results.

The second phase, implementation of a service with REST API, providing semantic search
functionality, is currently under active development (see section Future work for more
details). The source codes implemented in both phases can be found on AIoD GitHub:
https://github.com/aiondemand/aiod-enhanced-interaction/tree/main

Research dissemination assistant
We implemented and deployed the initial version of an application on a testing server, to be
tested by first users. Currently, the service enables generating proposals of LinkedIn posts
from the text of research papers. The service enables users to upload a PDF file (with a limit
on the maximum file size), select required properties of the social media post and generate a
draft of the post.

The user interface and workflow are illustrated below. It follows these steps:
1. The user uploads their research paper as PDF. The file can be either selected by

clicking on a button or through drag-and-drop functionality, as shown in Fig. 26.
2. The user clicks on the “Start summarization” button. This initiates the summarization

with a dedicated (smaller) language model, shown in Fig. 27. The summarization is
later used as an input to the LLM.

3. The user selects the desired properties of the post (e.g audience, length, use of
emoji’s,...). An example setting is shown in Fig. 28. The selection can be done while
the summarization is in the process.

4. The user generates a draft of the post by clicking on the “Generate post” button, and
can further edit it later.

29

https://github.com/aiondemand/aiod-enhanced-interaction/tree/main


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig 26. User interface of QuickRePost. It offers simple and sequential guidance, only
requiring users to upload a document and selecting the settings to generate the desired
social media posts.

30



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Fig. 27. After the summarization process is finished, the user can see the result. The
summarization process can be cancelled by clicking on the Reset button.

Fig. 28. User interface for selecting the desired language properties of the post.

31



Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

4. Future work

Even though the TAILOR project has come to an end, the AI4Europe project will run for
several more years and OpenML has a very active open-source development community
that will keep developing it to make sure it stays relevant and useful for machine learning
research. Below are the main plans to further finalise the developed integrations and LLM
interfaces.

OpenML-AIoD integration
Datasets are now fully integrated, but OpenML also has a large repository of benchmarks
(experiments) and machine learning pipelines. These can be quite easily integrated when
the AIoD API is developed further.

Another point of attention is the schema used to share datasets. In the context of facilitating
the exchange of datasets between platforms, OpenML has joined forces with HuggingFace,
Kaggle, Google, and others, to develop a metadata standard, called Croissant7, for sharing
machine learning datasets. It’s built on top of existing standards such as schema.org, but
adds a lot of important metadata that’s unique to machine learning datasets, including how
to use them properly and responsively. This makes datasets interchangeable between these
platforms. Extending the AIoD API to support Croissant may help closer integration.
Moreover, Croissant is being supported by a growing number of AI libraries, including
PyTorch and TensorFlow, making it easier to load Croissant datasets into these libraries to
build new models. We aim to extend Croissant to also describe models and evaluations as
well.

The Croissant format was accepted as a spotlight paper at NeurIPS 2024:
M.Akhtar, O. Benjelloun, C, Conforti, P. Gijsbers, J. Giner-Miguelez, N. Jain, M. Kuchnik, Q.
Lhoest, P. Marcenac, M. Maskey, P. Mattson, L. Oala, P. Ruyssen, R. Shinde, E. Simperl, G.
Thomas, S.Tykhonov, J. Vanschoren, J. van der Velde, S. Vogler, C-J. Wu. (2024) Croissant: A
Metadata Format for ML-Ready Datasets. NeurIPS 2024.

OpenML Chatbot
Initial experimentation and user testing has shown that while dataset retrieval works quite
well, adding complex constraints (e.g. limits on size and number of classes) are not always
interpreted correctly. Moreover, the generated code for downloading and using datasets can
still contain small mistakes, even though the model was trained on correct examples on how
to use it. This is inherent to the use of LLMs and RAG. At the moment we are working on
improving the service to avoid these mistakes, before we deploy it on the main OpenML
website.

7 https://research.google/blog/croissant-a-metadata-format-for-ml-ready-datasets/

32

https://arxiv.org/pdf/2403.19546


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

AIoD Chatbot
In the following months (Sep-Dec 2024) we’re going to finish the implementation of the
service providing enhanced semantic search capabilities. The service will be integrated with
the AIoD REST API and will provide its own REST API, extending the interface of the
platform.

Afterwards, we will add support for other types of AI Assets available in the platform, like
Models or Educational resources.

The service will regularly synchronise with the AIoD database in order to be able to provide
search capabilities also for newly added AI assets.

Regarding deployment, the service will be distributed as a set of Docker images and as a
Docker Compose configuration file. The main design decision is that the service may but
doesn’t have to be installed when a new node of the AIoD platform is installed - it’s up to the
users to decide. This has several practical reasons:

● There may be hardware constraints that prevent users from deploying a service that
utilises resource-demanding AI models (although they’re not as demanding as LLMs,
they’re still best to be run on a specialised hardware such as GPU, which is not
always available).

● As the platform aims to be extensible, potentially in the future there’ll be other
services providing semantic search built by 3rd parties and the users may select
them.

● The AIoD platform is meant to be robust, but lean. Therefore, some instances may
not want to provide semantic search at all.

The current state of the implementation of the semantic search service can be found on
AIoD GitHub: https://github.com/aiondemand/aiod-enhanced-interaction/tree/main/api.

Research dissemination assistant
Regarding QuickRePost, following activities are to be performed in Sep-Dec 2024:

● Integrate with the AIoD authentication mechanism - Keycloak/EGI checkin (to be
finished in Sep 2024);

● Create easily deployable service distribution as a set of Docker images and a Docker
Compose configuration;

● Deploy the service to the production and make it available to the users;

33

https://github.com/aiondemand/aiod-enhanced-interaction/tree/main/api


Project No 952215 October, 2024, D.11.4,
Integration of OpenML with AI4EU, v.2 [PU]

Appendix 1: Text of the original deliverable

Rationale: OpenML is an established platform for sharing machine learning datasets,
algorithms, and models. It contains repositories of over 20000 datasets, 14000 machine
learning pipelines, and 10 million machine learning experiments. It guarantees that all
shared results are reproducible, and allows easy sharing and downloading of all resources
via APIs and integrations into the most commonly used machine learning libraries. OpenML
is an open source platform primarily developed by AI researchers in the Netherlands,
Germany, and France. It is used yearly by over 150.000 people.

Approach: We plan to interface OpenML with the AI4EU platform, so that AI4EU resources
can be accessed via OpenML interfaces already used by many AI researchers, and OpenML
resources can be viewed via AI4EU. We will also engage in discussions with AI4EU
developers to create a more integrated, vibrant ecosystem. OpenML is leveraged in WP7
and Task 9.1, and this integration will therefore also make this work directly available to the
AI4EU platform.

34


