LSB: Local Self-Balancing MCMC in Discrete Spaces

Emanuele Sansone

Problem

- Sampling in high dimensions: $p_X(x) = \frac{p_X(x)}{Z}$
- MCMC: $T(x'|x) = A(x', x)Q(x'|x)$
- Locally Balanced Proposal [1]:
 \[Q(x'|x) = \frac{g((x'|x))/g(x)}{Z(x)} \]

Question: How to adapt the proposal to target to improve sampling efficiency?

Solution

Parametrizations

- Linear (LSB 1):
 \[g(t) = tg(1/t) \]
 \[g_\theta(t) = \sum_{i=1}^{\theta} g_i(t) = \frac{1}{2} I(\theta) \sum_{i=1}^{\theta} g_i(t) \]

- Nonlinear (LSB 2):
 \[g_\theta(t) = \min \left\{ \ell_\theta(t), t \frac{1}{t} \right\} \]

Objective

\[I_\theta = KL(p_X(x)T(x'|x)||p_X(x)p_X(x')) \]

Any non-negative real function $\ell_\theta(t)$

Learning procedure

Use historical samples to estimate the objective and update theta at each sampling iteration (during burn-in phase)

Experiments

- 2D Ising
- Bayesian Networks

References

Contact: emanuele.sansone@kuleuven.be