Speeding Up Neural Network Verification via Automated Algorithm Configuration

Background

networks are vulnerable to • Neural adversarial examples

- network verification neural Several methods are based on mixed integer linear programming (MIP)
- Problem: High computational costs and many timeouts

Method

- 1 CPU core per configuration

Baselines & Results

- Task: Verify robust classifier over full MNIST dataset (*n*=10 000)
- Avg. running time on subset of *solvable* instances (instances solved by any approach; *n*=8 646) \bullet

	Portfolio (4 Cores)	Default** (32 Cores)	Default (4 Cores)	Default (1 Core)
Timeouts	14.96%	21.29%	17.74%	17.66%
Adversarial error Upper bound	23.86%	30.67%	27.49%	27.58%
Lower bound	14.43%	14.37%	14.40%	14.36%
Avg. running time [CPU s]*	8 4 7 8	39 772	22 065	20 117

* Timeouts are penalised as *t* x 10. ** As employed in MIPVerify

Matthias König, Holger H. Hoos, Jan N. van Rijn Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

• Parallel portfolio of optimised solver configurations

Baselines: MIPVerify verification engine with Gurobi solver at default using (i) all available CPU cores, (ii) 4 CPU cores, (iii) 1 CPU core with same overall CPU time budget

Self-monitoring

Conclusions

- Improved performance of state-of-the-art MIP-based verification engine MIPVerify:
 - 4.7-fold reduction in CPU time
 - 1.4 times fewer timeouts
 - 1.3-fold improvement on upper bound
- Future work considers further MIP-based verification engines, classifiers and datasets