Conformal Inference for multivariate, complex, and heterogeneous data

Marcos Matabuena University of Santiago de Compostela In this project, in collaboration with Gábor Lugosi (UPF), we propose new uncertainty quantification methods based on the design of new Conformal Inference strategies for complex data that arise in modern personalized medicine applications. The new uncertainty methods can examine the reliability and safety of results obtained with […]

Conformal Inference for multivariate, complex, and heterogeneous data Read More »

Private Continual Learning from a Stream of Pretrained Models

Antonio Carta Post-doc at Pisa University Learning continually from non-stationary data streams is a challenging research topic of growing popularity in the last few years. Being able to learn, adapt and generalize continually, in an efficient, effective and scalable way appears to be fundamental for a more sustainable development of Artificial Intelligent systems. However, access

Private Continual Learning from a Stream of Pretrained Models Read More »

Matheuristic Techniques for Timetabling Problems

Roberto Maria Rosati PhD Student in Information Engineering at University of Udine Recently, matheuristics have emerged as a promising research branch in combinatorial optimization. Thanks to this collaboration supported by TAILOR connectivity fund, we will design and apply novel matheuristic techniques to a variety of timetabling problems that are under investigation at University of Udine.

Matheuristic Techniques for Timetabling Problems Read More »

Trustworthy and sample efficient computer vision

Mohammadreza Amirian Research assistant, Zurich University of Applied Sciences (ZHAW) After the breakthrough of transformers in the context of natural language processing, these models are now being adapted for computer vision and image classification tasks. Transformer-based models showed at least equal descriptive properties compared with convolutional models, however, initial specimen required a larger amount of

Trustworthy and sample efficient computer vision Read More »

Report from the theme development workshop “AI for future healthcare”

The third Joint Theme Development Workshop (TDW) co-organised by CLAIRE, TAILOR and VISION1 on “AI for Future Healthcare” took place on the 16th December 2021 with the aim to develop and identify the most promising and emerging AI topics in the healthcaresector. At this one-day workshop, experts from academia, industry and politics jointly developed initial

Report from the theme development workshop “AI for future healthcare” Read More »

TAILOR has a LinkedIn page!

The TAILOR project now has a LinkedIn page. Here you will find all the initiatives TAILOR and TAILOR members embrace and you can always be updated on what is going on in our network. Check it out here: TAILOR Network of Excellence Centres on Trustworthy AI.  The most interesting possibility LinkedIn gives is to build

TAILOR has a LinkedIn page! Read More »