Scientific Publications

Conference papers/workshops

All TAILOR scientific publications (on external sites)

Publications from the TAILOR project can be viewed on this dedicated Github page (opens in new tab).

TAILOR publications can also be found on OpenAire (opens in new tab).

TAILOR-related scientific publications from project start until December 2023.

[1]

A. Abate et al., ‘Rational verification: game-theoretic verification of multi-agent systems’, Appl. Intell., vol. 51, no. 9, pp. 6569–6584, 2021.

[2]

A. Abels, T. Lenaerts, V. Trianni, and A. Nowé, ‘Collective Decision-Making as a Contextual Multi-armed Bandit Problem’, in Computational Collective Intelligence – 12th International Conference, ICCCI 2020, Da Nang, Vietnam, November 30 – December 3, 2020, Proceedings, N. T. Nguyen, B. H. Hoang, C.-P. Huynh, D. Hwang, B. Trawinski, and G. Vossen, Eds., in Lecture Notes in Computer Science, vol. 12496. Springer, 2020, pp. 113–124. doi: 10.1007/978-3-030-63007-2_9.

[3]

A. Abels, T. Lenaerts, V. Trianni, and A. Nowé, ‘How Expert Confidence Can Improve Collective Decision-Making in Contextual Multi-Armed Bandit Problems’, in Computational Collective Intelligence – 12th International Conference, ICCCI 2020, Da Nang, Vietnam, November 30 – December 3, 2020, Proceedings, N. T. Nguyen, B. H. Hoang, C.-P. Huynh, D. Hwang, B. Trawinski, and G. Vossen, Eds., in Lecture Notes in Computer Science, vol. 12496. Springer, 2020, pp. 125–138. doi: 10.1007/978-3-030-63007-2_10.

[4]

A. Abels, T. Lenaerts, V. Trianni, and A. Nowé, ‘Dealing with Expert Bias in Collective Decision-Making’, CoRR, vol. abs/2106.13539, 2021, [Online]. Available: https://arxiv.org/abs/2106.13539

[5]

A. Abels, T. Lenaerts, V. Trianni, and A. Nowé, ‘Dealing with expert bias in collective decision-making’, Artif. Intell., vol. 320, p. 103921, 2023.

[6]

A. Abels, T. Lenaerts, V. Trianni, and A. Nowé, ‘Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making’, in ICML, in Proceedings of Machine Learning Research, vol. 202. PMLR, 2023, pp. 79–90.

[7]

O. Ackerman Viden, Y. Trabelsi, P. Xu, K. A. Sankararaman, O. Maksimov, and S. Kraus, ‘Allocation Problem in Remote Teleoperation: Online Matching with Offline Reusable Resources and Delayed Assignments’, in Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, 2023, pp. 513–521.

[8]

D. M. Adamski and J. Potoniec, ‘Reason-able Embeddings: Learning Concept Embeddings with a Transferable Neural Reasoner’, Semantic Web, vol. in print, 2023.

[9]

S. Agostinelli, G. Bergami, A. Fiorenza, F. M. Maggi, A. Marrella, and F. Patrizi, ‘Discovering Declarative Process Model Behavior from Event Logs via Model Learning’, in ICPM, IEEE, 2021, pp. 48–55.

[10]

S. Agostinelli, F. Chiariello, F. M. Maggi, A. Marrella, and F. Patrizi, ‘Process mining meets model learning: Discovering deterministic finite state automata from event logs for business process analysis’, Inf. Syst., vol. 114, p. 102180, 2023, doi: 10.1016/j.is.2023.102180.

[11]

L. Ai, J. Langer, S. H. Muggleton, and U. Schmid, ‘Explanatory machine learning for sequential human teaching’, Machine Learning, 2023, doi: 10.1007/s10994-023-06351-8.

[12]

D. Aineto, S. Jiménez, and E. Onaindia, ‘Generalized Temporal Inference via Planning’, in KR, 2021, pp. 22–31.

[13]

D. Aineto, E. Onaindia, M. Ramírez, E. Scala, and I. Serina, ‘Explaining the Behaviour of Hybrid Systems with PDDL+ Planning’, in IJCAI, ijcai.org, 2022, pp. 4567–4573.

[14]

D. Albani, W. Hönig, D. Nardi, N. Ayanian, and V. Trianni, ‘Hierarchical Task Assignment and Path Finding with Limited Communication for Robot Swarms’, Applied Sciences, vol. 11, no. 7, p. 3115, 2021, doi: 10.3390/app11073115.

[15]

N. Alechina, G. D. Giacomo, B. Logan, and G. Perelli, ‘Automatic Synthesis of Dynamic Norms for Multi-Agent Systems’, in KR, 2022.

[16]

A. Alman, F. M. Maggi, M. Montali, F. Patrizi, and A. Rivkin, ‘Multi-Model Monitoring Framework for Hybrid Process Specifications’, in CAISE, 2022.

[17]

M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer, ‘Order-sorted Homeomorphic Embedding Modulo Combinations of Associativity and/or Commutativity Axioms’, Fundam. Informaticae, vol. 177, no. 3–4, pp. 297–329, 2020, doi: 10.3233/FI-2020-1991.

[18]

M. Alpuente, D. Pardo, and A. Villanueva, ‘Abstract Contract Synthesis and Verification in the Symbolic K Framework’, Fundam. Informaticae, vol. 177, no. 3–4, pp. 235–273, 2020, doi: 10.3233/FI-2020-1989.

[19]

S. Alsaidi et al., ‘An analogy based framework for patient-stay identification in healthcare’, in ATA@ICCBR 2022 – Workshop Analogies: from Theory to Applications, Nancy, France, 2022. [Online]. Available: https://hal.inria.fr/hal-03763772

[20]

S. Alsaidi, M. Couceiro, S. Quennelle, A. Burgun, N. Garcelon, and A. Coulet, ‘Exploring Analogical Inference in Healthcare’, in Proceedings of the Workshop on the Interactions between Analogical Reasoning and Machine Learning (International Joint Conference on Artificial Intelligence – European Conference on Artificial Intelligence (IJCAI-ECAI 2022)), Vienna, Austria, July 23, 2022, 2022, pp. 40–50.

[21]

S. Alsaidi, A. Decker, P. Lay, E. Marquer, P.-A. Murena, and M. Couceiro, ‘A Neural Approach for Detecting Morphological Analogies’, in The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Porto/Online, Portugal, 2021. [Online]. Available: https://hal.inria.fr/hal-03313556

[22]

G. Alves, M. Amblard, F. Bernier, M. Couceiro, and A. Napoli, ‘Reducing Unintended Bias of ML Models on Tabular and Textual Data’, in The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Porto/Online, Portugal, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03312797

[23]

G. Alves, V. Bhargava, M. Couceiro, and A. Napoli, ‘Making ML Models Fairer Through Explanations: The Case of LimeOut’, in Analysis of Images, Social Networks and Texts – 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15-16, 2020, Revised Selected Papers, in Lecture Notes in Computer Science, vol. 12602. Springer, 2020, pp. 3–18.

[24]

L. R. Amado, R. F. Pereira, and F. Meneguzzi, ‘Combining LSTMs and Symbolic Approaches for Robust Plan Recognition’, in AAMAS, 2021.

[25]

U. Amato, A. Antoniadis, I. D. Feis, and I. Gijbels, ‘Penalized wavelet nonparametric univariate logistic regression for irregular spaced data’, Statistics, vol. 0, no. 0, pp. 1–24, 2023, doi: 10.1080/02331888.2023.2248679.

[26]

B. Aminof, G. D. Giacomo, A. Lomuscio, A. Murano, and S. Rubin, ‘Synthesizing Best-Effort Strategies under Multiple Environment Specifications’, in KR, 2021.

[27]

B. Aminof, G. D. Giacomo, and S. Rubin, ‘Best-Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up’, in IJCAI, 2021.

[28]

B. Aminof, G. D. Giacomo, S. Rubin, and F. Zuleger, ‘Beyond Strong-Cyclic: Doing Your Best in Stochastic Environments’, in IJCAI, ijcai.org, 2022, pp. 2525–2531.

[29]

B. Aminof, G. D. Giacomo, and S. Rubin, ‘Reactive Synthesis of Dominant Strategies’, in AAAI, AAAI Press, 2023, pp. 6228–6235.

[30]

B. Aminof, G. D. Giacomo, S. Rubin, and F. Zuleger, ‘Stochastic Best-Effort Strategies for Borel Goals’, in LICS, 2023, pp. 1–13.

[31]

B. Aminof, G. D. Giacomo, A. D. Stasio, H. Francon, S. Rubin, and S. Zhu, ‘LTLf Synthesis Under Environment Specifications for Reachability and Safety Properties’, CoRR, vol. abs/2308.15184, 2023.

[32]

B. Aminof, G. D. Giacomo, A. D. Stasio, H. Francon, S. Rubin, and S. Zhu, ‘sc ltlf Synthesis Under Environment Specifications for Reachability and Safety Properties’, in EUMAS, in Lecture Notes in Computer Science, vol. 14282. Springer, 2023, pp. 263–279.

[33]

G. Apriceno, A. Passerini, and L. Serafini, ‘A Neuro-Symbolic Approach to Structured Event Recognition’, in 28th International Symposium on Temporal Representation and Reasoning (TIME 2021), in Leibniz International Proceedings in Informatics (LIPIcs), vol. 206. 2021, p. 11:1-11:14. doi: 10.4230/LIPIcs.TIME.2021.11.

[34]

H. Asghar, C. Bobineau, and M.-C. Rousset, ‘Identifying Privacy Risks raised by Utility Queries’, in 23rd International conference on Web Information Systems Engineering (WISE 2022), Biarritz, France, Oct. 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03833542

[35]

H. Asghar, C. Bobineau, and M.-C. Rousset, ‘Explanation-based Tool for Helping Data Producers to Reduce Privacy Risks’, in Extended Semantic Web Conference, Heraklion, Greece: Jamie McCusker and Ernesto Jimenez-Ruiz, May 2023. [Online]. Available: https://hal.science/hal-04215771

[36]

G. Attardi, D. Sartiano, and M. Simi, ‘Biaffine Dependency and Semantic Graph Parsing for EnhancedUniversal Dependencies’, in Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021), Online: Association for Computational Linguistics, Aug. 2021, pp. 184–188. doi: 10.18653/v1/2021.iwpt-1.19.

[37]

D. Atzeni, D. Bacciu, F. Errica, and A. Micheli, ‘Modeling Edge Features with Deep Bayesian Graph Networks’, in International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, IEEE, 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533430.

[38]

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, and P. Marquis, ‘On the Computational Intelligibility of Boolean Classifiers’, in KR, 2021, pp. 74–86.

[39]

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, and P. Marquis, ‘On Preferred Abductive Explanations for Decision Trees and Random Forests’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 643–650.

[40]

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M. Lagniez, and P. Marquis, ‘Trading Complexity for Sparsity in Random Forest Explanations’, in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 – March 1, 2022, AAAI Press, 2022, pp. 5461–5469.

[41]

S. Azzolin, A. Longa, P. Barbiero, P. Lio, and A. Passerini, ‘Global Explainability of GNNs via Logic Combination of Learned Concepts’, in The Eleventh International Conference on Learning Representations, 2023.

[42]

D. Azzolini, E. Bellodi, and F. Riguzzi, ‘Approximate Inference in Probabilistic Answer Set Programming for Statistical Probabilities’, in AI*IA, in Lecture Notes in Computer Science, vol. 13796. Springer, 2022, pp. 33–46.

[43]

D. Azzolini, E. Bellodi, and F. Riguzzi, ‘MAP Inference in Probabilistic Answer Set Programs’, in AI*IA, in Lecture Notes in Computer Science, vol. 13796. Springer, 2022, pp. 413–426.

[44]

D. Azzolini, E. Bellodi, and F. Riguzzi, ‘Statistical Statements in Probabilistic Logic Programming’, in LPNMR, in Lecture Notes in Computer Science, vol. 13416. Springer, 2022, pp. 43–55.

[45]

D. Azzolini and F. Riguzzi, ‘Probabilistic Logic Models for the Lightning Network’, Cryptogr., vol. 6, no. 2, p. 29, 2022.

[46]

D. Azzolini and F. Riguzzi, ‘Inference in Probabilistic Answer Set Programming under the Credal Semantics’, in AixIA 2023 – Advances in Artificial Intelligence, in Lecture Notes in Artificial Intelligence. Heidelberg, Germany: Springer, 2023.

[47]

D. Azzolini and F. Riguzzi, ‘Lifted Inference for Statistical Statements in Probabilistic Answer Set Programming’, International Journal of Approximate Reasoning, 2023.

[48]

J. B\laszczyński, S. Greco, B. Matarazzo, and M. Szeląg, ‘Dominance-Based Rough Set Approach: Basic Ideas and Main Trends’, in Intelligent Decision Support Systems: Combining Operations Research and Artificial Intelligence – Essays in Honor of Roman S\lowiński, in Multiple Criteria Decision Making. , Cham: Springer, 2022, pp. 353–382. doi: 10.1007/978-3-030-96318-7_18.

[49]

D. Bacciu, A. Conte, R. Grossi, F. Landolfi, and A. Marino, ‘K-plex cover pooling for graph neural networks’, Data Min. Knowl. Discov., vol. 35, no. 5, pp. 2200–2220, 2021, doi: 10.1007/s10618-021-00779-z.

[50]

D. Bacciu, A. Conte, and F. Landolfi, ‘Generalizing Downsampling from Regular Data to Graphs’, in AAAI, AAAI Press, 2023, pp. 6718–6727. doi: 10.1609/aaai.v37i6.25824.

[51]

D. Bacciu, F. Errica, A. Gravina, L. Madeddu, M. Podda, and G. Stilo, ‘Deep Graph Networks for Drug Repurposing with Multi-Protein Targets’, IEEE Transactions on Emerging Topics in Computing, pp. 1–14, 2023, doi: 10.1109/TETC.2023.3238963.

[52]

D. Bacciu and D. Numeroso, ‘Explaining Deep Graph Networks via Input Perturbation’, IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2022, doi: 10.1109/TNNLS.2022.3165618.

[53]

D. Bacciu and M. Podda, ‘Graphgen-redux: a Fast and Lightweight Recurrent Model for labeled Graph Generation’, in International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, IEEE, 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533743.

[54]

B. Banihashemi, G. D. Giacomo, and Y. Lespérance, ‘Abstraction of Nondeterministic Situation Calculus Action Theories’, in IJCAI, ijcai.org, 2023, pp. 3112–3122.

[55]

B. Banihashemi, G. D. Giacomo, and Y. Lespérance, ‘Abstraction of Nondeterministic Situation Calculus Action Theories – Extended Version’, CoRR, vol. abs/2305.14222, 2023.

[56]

P. Baquero-Arnal et al., ‘MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge: Extension’, Applied Sciences, vol. 12, no. 2, p. 804, 2022, doi: 10.3390/app12020804.

[57]

P. Barbiero et al., ‘Interpretable Neural-Symbolic Concept Reasoning’, in ICML, in Proceedings of Machine Learning Research, vol. 202. PMLR, 2023, pp. 1801–1825. [Online]. Available: https://proceedings.mlr.press/v202/barbiero23a.html

[58]

R. Barták, S. Ondrcková, G. Behnke, and P. Bercher, ‘Correcting Hierarchical Plans by Action Deletion’, in KR, 2021, pp. 99–109. doi: 10.24963/kr.2021/10.

[59]

A. E. Baz et al., ‘Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification’, in NeurIPS (Competition and Demos), in Proceedings of Machine Learning Research, vol. 176. PMLR, 2021, pp. 80–96.

[60]

A. Bazin, M. Couceiro, M.-D. Devignes, and A. Napoli, ‘Explaining Multicriteria Decision Making with Formal Concept Analysis’, in Proceedings of the Fifthteenth International Conference on Concept Lattices and Their Applications, Tallinn, Estonia, June 29-July 1, 2020, in CEUR Workshop Proceedings, vol. 2668. CEUR-WS.org, 2020, pp. 119–130.

[61]

A. Bazin, M. Couceiro, M.-D. Devignes, and A. Napoli, ‘Steps towards causal Formal Concept Analysis’, Int. J. Approx. Reason., vol. 142, pp. 338–348, 2022.

[62]

N. Beckers, L. Cavalcante Siebert, M. Bruijnes, C. Jonker, and D. Abbink, ‘Drivers of partially automated vehicles are blamed for crashes that they cannot reasonably avoid’, Nature Scientific Reports, vol. 12, no. 16193, 2022.

[63]

M. Behery, M. Trinh, C. Brecher, and G. Lakemeyer, ‘Self-Optimizing Agents Using Mixed Initiative Behavior Trees’, in SEAMS, IEEE, 2023, pp. 97–103. [Online]. Available: https://doi.org/10.1109/SEAMS59076.2023.00023

[64]

G. Behnke, D. Speck, M. Katz, and S. Sohrabi, ‘On Partial Satisfaction Planning with Total-Order HTNs’, in ICAPS, 2023, pp. 42–51.

[65]

M.-B. Belaid, N. Belmecheri, A. Gotlieb, N. Lazaar, and H. Spieker, ‘GEQCA: Generic Qualitative Constraint Acquisition’, in AAAI, 2022.

[66]

J. Berg, B. Bogaerts, J. Nordström, A. Oertel, and D. Vandesande, ‘Certified Core-Guided MaxSAT Solving’, in CADE, in Lecture Notes in Computer Science, vol. 14132. Springer, 2023, pp. 1–22. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-031-38499-8_1

[67]

M. Bernaschi et al., ‘Seeking critical nodes in digraphs’, Journal of Computational Science, vol. 69, p. 102012, 2023, doi: https://doi.org/10.1016/j.jocs.2023.102012.

[68]

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard, ‘Complexity of Minimum-Size Arc-Inconsistency Explanations’, in 28th International Conference on Principles and Practice of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, in LIPIcs, vol. 235. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, p. 9:1-9:14. doi: 10.4230/LIPIcs.CP.2022.9.

[69]

C. Bessiere et al., ‘Learning constraints through partial queries’, Artif. Intell., vol. 319, p. 103896, 2023.

[70]

C. Bessiere, C. Carbonnel, and A. Himeur, ‘Learning Constraint Networks over Unknown Constraint Languages’, in IJCAI, ijcai.org, 2023, pp. 1876–1883.

[71]

V. Bhargava, M. Couceiro, and A. Napoli, ‘LimeOut: An Ensemble Approach to Improve Process Fairness’, in ECML PKDD 2020 Workshops – Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020): SoGood 2020, PDFL 2020, MLCS 2020, NFMCP 2020, DINA 2020, EDML 2020, XKDD 2020 and INRA 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, in Communications in Computer and Information Science, vol. 1323. Springer, 2020, pp. 475–491.

[72]

A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer, ‘Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework’, in ECAI, in Frontiers in Artificial Intelligence and Applications, vol. 325. IOS Press, 2020, pp. 427–434.

[73]

A. Biedenkapp, D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp, ‘Learning Domain-Independent Policies for Open List Selection’, in PRL Workshop, 2022.

[74]

B. Bischl et al., ‘OpenML Benchmarking Suites’, in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, in NIPS’21. 2021.

[75]

B. Bischl et al., ‘OpenML Benchmarking Suites’, in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[76]

I. Błądek and K. Krawiec, ‘Counterexample-Driven Genetic Programming for Symbolic Regression with Formal Constraints’, IEEE Transactions on Evolutionary Computation, vol. 26, no. 6, pp. 1–1, 2022, doi: 10.1109/TEVC.2022.3205286.

[77]

I. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns, ‘Simplifying Step-Wise Explanation Sequences’, in CP, in LIPIcs, vol. 280. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, p. 11:1-11:20.

[78]

M. Blsták and V. Rozinajová, ‘Automatic question generation based on sentence structure analysis using machine learning approach’, Nat. Lang. Eng., vol. 28, no. 4, pp. 487–517, 2022.

[79]

F. Bodria, F. Giannotti, R. Guidotti, F. Naretto, D. Pedreschi, and S. Rinzivillo, ‘Benchmarking and survey of explanation methods for black box models’, Data Mining and Knowledge Discovery, vol. 37, no. 5, pp. 1719–1778, 2023, doi: 10.1007/s10618-023-00933-9.

[80]

B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, ‘Certified Dominance and Symmetry Breaking for Combinatorial Optimisation’, J. Artif. Intell. Res., vol. 77, pp. 1539–1589, 2023.

[81]

J. Bogatinovski, L. Todorovski, S. Dzeroski, and D. Kocev, ‘Comprehensive comparative study of multi-label classification methods’, Expert Syst. Appl., vol. 203, p. 117215, 2022, doi: 10.1016/j.eswa.2022.117215.

[82]

J. Bogatinovski, L. Todorovski, S. Dzeroski, and D. Kocev, ‘Explaining the performance of multilabel classification methods with data set properties’, Int. J. Intell. Syst., vol. 37, no. 9, pp. 6080–6122, 2022, doi: 10.1002/int.22835.

[83]

K. Boggess, S. Kraus, and L. Feng, ‘Toward policy explanations for multi-agent reinforcement learning’, Proceedings of IJCAI-22, 2022.

[84]

K. Boggess, S. Kraus, and L. Feng, ‘Explainable Multi-Agent Reinforcement Learning for Temporal Queries’, Proceedings of IJCAI-23, 2023.

[85]

D. van Bokkem, M. van den Hemel, S. Dumancic, and N. Yorke-Smith, ‘Embedding a Long Short-Term Memory Network in a Constraint Programming Framework for Tomato Greenhouse Optimisation’, in AAAI, AAAI Press, 2023, pp. 15731–15737. doi: 10.1609/aaai.v37i13.26867.

[86]

L. Bonassi, G. De Giacomo, M. Favorito, F. Fuggitti, A. Gerevini, and E. Scala, ‘FOND Planning for Pure-Past Linear Temporal Logic Goals’, Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), Sep. 2023, doi: 10.3233/FAIA230281.

[87]

L. Bonassi, G. D. Giacomo, M. Favorito, F. Fuggitti, A. E. Gerevini, and E. Scala, ‘Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic’, in ICAPS, AAAI Press, 2023, pp. 61–69.

[88]

B. Bonet and H. Geffner, ‘General Policies, Representations, and Planning Width’, in AAAI, 2021.

[89]

V. Bonsignori, R. Guidotti, and A. Monreale, ‘Deriving a Single Interpretable Model by Merging Tree-Based Classifiers’, in Discovery Science – 24th International Conference, DS 2021, Halifax, NS, Canada, October 11-13, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 12986. Springer, 2021, pp. 347–357. doi: 10.1007/978-3-030-88942-5_27.

[90]

A. Bontempelli, F. Giunchiglia, A. Passerini, and S. Teso, ‘Human-in-the-loop Handling of Knowledge Drift’, Data Mining and Knowledge Discovery, 2022.

[91]

A. Bontempelli, F. Giunchiglia, A. Passerini, and S. Teso, ‘Toward a Unified Framework for Debugging Gray-box Models’, The AAAI-22 Workshop on Interactive Machine Learning, 2022.

[92]

A. Bontempelli, S. Teso, K. Tentori, F. Giunchiglia, and A. Passerini, ‘Concept-level Debugging of Part-Prototype Networks’, in The Eleventh International Conference on Learning Representations, 2023.

[93]

A. W. Bosman, H. H. Hoos, and J. N. van Rijn, ‘A Preliminary Study of Critical Robustness Distributions in Neural Network Verification’, 6th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), 2023.

[94]

J. Boudou, A. Herzig, and N. Troquard, ‘Resource separation in dynamic logic of propositional assignments’, J. Log. Algebraic Methods Program., vol. 121, p. 100683, 2021, doi: 10.1016/j.jlamp.2021.100683.

[95]

H. Bourel, A. Jonsson, O.-A. Maillard, and M. S. Talebi, ‘Exploration in Reward Machines with Low Regret’, in International Conference on Artificial Intelligence and Statistics (AISTATS), 2023, pp. 4114–4146.

[96]

D. Brunori, S. Colonnese, F. Cuomo, and L. Iocchi, ‘A Reinforcement Learning Environment for Multi-Service UAV-enabled Wireless Systems’, 2021.

[97]

D. Brzezinski, L. L. Minku, T. Pewinski, J. Stefanowski, and A. Szumaczuk, ‘The impact of data difficulty factors on classification of imbalanced and concept drifting data streams’, Knowl. Inf. Syst., vol. 63, no. 6, pp. 1429–1469, 2021, doi: 10.1007/s10115-021-01560-w.

[98]

J. Burden, J. Hernández-Orallo, and S. Ó. hÉigeartaigh, ‘Negative Side Effects and AI Agent Indicators: Experiments in SafeLife’, in SafeAI@AAAI, 2021.

[99]

C. Büchner, T. Keller, and M. Helmert, ‘Exploiting Cyclic Dependencies in Landmark Heuristics’, in ICAPS, 2021.

[100]

M. Calautti, M. Console, and A. Pieris, ‘Benchmarking Approximate Consistent Query Answering’, in PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021, L. Libkin, R. Pichler, and P. Guagliardo, Eds., ACM, 2021, pp. 233–246. doi: 10.1145/3452021.3458309.

[101]

D. Calvanese, G. D. Giacomo, M. Montali, and F. Patrizi, ‘Verification and Monitoring for First-Order LTL with Persistence-Preserving Quantification over Finite and Infinite Traces’, in IJCAI, ijcai.org, 2022, pp. 2553–2560.

[102]

D. Calvanese, G. D. Giacomo, M. Montali, and F. Patrizi, ‘Verification of Generic, Relational Transition Systems’, in Proceedings of the Workshop on Process Management in the AI Era (PMAI 2022) co-located with (IJCAI-ECAI 2022), in CEUR Workshop Proceedings, vol. 3310. CEUR-WS.org, 2022, pp. 93–96. [Online]. Available: https://ceur-ws.org/Vol-3310/paper16.pdf

[103]

L. Canonne, B. Derbel, F. Chicano, and G. Ochoa, ‘To Combine or Not to Combine Graybox Crossover and Local Search?’, in Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 257–265. doi: 10.1145/3583131.3590466.

[104]

C. Carbonnel, ‘On Redundancy in Constraint Satisfaction Problems’, in 28th International Conference on Principles and Practice of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, in LIPIcs, vol. 235. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, p. 11:1-11:15. doi: 10.4230/LIPIcs.CP.2022.11.

[105]

P. Carbonnelle, J. Vennekens, B. Bogaerts, and M. Denecker, ‘Interactive Model Expansion in an Observable Environment’, CoRR, vol. abs/2305.17140, 2023, [Online]. Available: https://doi.org/10.48550/arXiv.2305.17140

[106]

F. A. Cardillo and U. Straccia, ‘Fuzzy OWL-BOOST: Learning Fuzzy Concept Inclusions via Real-Valued Boosting’, Fuzzy Sets and Systems, 2021, doi: 10.1016/j.fss.2021.07.002.

[107]

G. Casini, T. A. Meyer, and I. Varzinczak, ‘Contextual Conditional Reasoning’, in AAAI, AAAI Press, 2021, pp. 6254–6261.

[108]

G. Casini and U. Straccia, ‘A Rational Entailment for Expressive Description Logics via Description Logic Programs’, in Proceedings of the Southern African Artificial Intelligence Conference (SACAIR-2021), in Communications in Computer and Information Science, vol. 1551. Springer, 2022, pp. 177–191. doi: https://doi.org/10.1007/978-3-030-95070-5_12.

[109]

G. Casini and U. Straccia, ‘A General Framework for Modelling Conditional Reasoning – Preliminary Report’, in Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, Aug. 2022, pp. 112–121. doi: 10.24963/kr.2022/12.

[110]

G. Casini and U. Straccia, ‘Defeasible RDFS via Rational Closure’, Information Sciences, vol. 643, no. 118409, pp. 1–49, 2023, doi: https://doi.org/10.1016/j.ins.2022.11.165.

[111]

D. Castellana and D. Bacciu, ‘Learning from Non-Binary Constituency Trees via Tensor Decomposition’, in Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, International Committee on Computational Linguistics, 2020, pp. 3899–3910. doi: 10.18653/v1/2020.coling-main.346.

[112]

D. Castellana and D. Bacciu, ‘A tensor framework for learning in structured domains’, Neurocomputing, vol. 470, pp. 405–426, 2022, doi: 10.1016/j.neucom.2021.05.110.

[113]

A. Cecconi, G. D. Giacomo, C. D. Ciccio, F. M. Maggi, and J. Mendling, ‘Measuring the interestingness of temporal logic behavioral specifications in process mining’, Inf. Syst., vol. 107, p. 101920, 2022.

[114]

O. Čepek, ‘Switch lists in the landscape of knowledge representation languages’, in Proceedings of the Thirty-Fifth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2022, Hutchinson Island, Jensen Beach, Florida, USA, May 15-18, 2022, R. Barták, F. Keshtkar, and M. Franklin, Eds., 2022. doi: 10.32473/flairs.v35i.130700.

[115]

O. Čepek and J. Weigle, ‘A Direct Equivalence-Testing Algorithm for SLRs’, in Proceedings of the International Symposium on Artificial Intelligence and Mathematics 2022 (ISAIM 2022), Fort Lauderdale, Florida, USA, January 3-5, 2022, 2022. [Online]. Available: https://isaim2022.cs.ou.edu/papers/ISAIM2022\_Boolean\_Cepek\_Weigle.pdf

[116]

K. Chan, S. P. Kaszefski-Yaschuk, C. Saran, E. Marquer, and M. Couceiro, ‘Solving Morphological Analogies Through Generation’, in Proceedings of the Workshop on the Interactions between Analogical Reasoning and Machine Learning (International Joint Conference on Artificial Intelligence – European Conference on Artificial Intelligence (IJCAI-ECAI 2022)), Vienna, Austria, July 23, 2022, 2022, pp. 29–39.

[117]

F. Chiariello, F. M. Maggi, and F. Patrizi, ‘A tool for compiling Declarative Process Mining problems in ASP’, Softw. Impacts, vol. 14, p. 100435, 2022, doi: 10.1016/j.simpa.2022.100435.

[118]

F. Chiariello, F. M. Maggi, and F. Patrizi, ‘ASP-Based Declarative Process Mining’, in AAAI, AAAI Press, 2022, pp. 5539–5547.

[119]

F. Chiariello, F. M. Maggi, and F. Patrizi, ‘From LTL on Process Traces to Finite-state Automata’, in BPM (Demos / Resources Forum), in CEUR Workshop Proceedings, vol. 3469. CEUR-WS.org, 2023, pp. 127–131. [Online]. Available: https://ceur-ws.org/Vol-3469/paper-23.pdf

[120]

F. Chicano, Z. Dahi, and G. Luque, ‘An Efficient QAOA via a Polynomial QPU-Needless Approach’, in Proceedings of the Companion Conference on Genetic and Evolutionary Computation, in GECCO ’23 Companion. New York, NY, USA: Association for Computing Machinery, 2023, pp. 2187–2194. doi: 10.1145/3583133.3596409.

[121]

F. Chicano, B. Derbel, and S. Verel, ‘Fourier Transform-Based Surrogates for Permutation Problems’, in Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 275–283. doi: 10.1145/3583131.3590425.

[122]

F. Chicano, G. Ochoa, B. Derbel, and L. Canonne, ‘Local Optima Markov Chain: A New Tool for Landscape-Aware Analysis of Algorithm Dynamics’, in Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 284–292. doi: 10.1145/3583131.3590422.

[123]

F. Chicano, G. Ochoa, L. D. Whitley, and R. Tinós, ‘Dynastic Potential Crossover Operator’, Evolutionary Computation, pp. 1–35, Dec. 2021, doi: 10.1162/evco_a_00305.

[124]

R. Christen et al., ‘PARIS: Planning Algorithms for Reconfiguring Independent Sets’, in ECAI, 2023.

[125]

R. Christen, S. Eriksson, F. Pommerening, and M. Helmert, ‘Detecting Unsolvability Based on Separating Functions’, in ICAPS, 2022, pp. 44–52.

[126]

L. Chrpa, R. Barták, J. Vodrázka, and M. Vomlelová, ‘Attributed Transition-Based Domain Control Knowledge for Domain-Independent Planning (Extended Abstract)’, in 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023, IEEE, 2023, pp. 3879–3880. doi: 10.1109/ICDE55515.2023.00366.

[127]

G. Cima, M. Console, M. Lenzerini, and A. Poggi, ‘Abstraction in Data Integration’, in 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, IEEE, 2021, pp. 1–11. doi: 10.1109/LICS52264.2021.9470716.

[128]

G. Cima, M. Console, M. Lenzerini, and A. Poggi, ‘Investigating Monotone Abstractions’, in Proceedings of the 30th Italian Symposium on Advanced Database Systems, SEBD 2022, Tirrenia (PI), Italy, June 19-22, 2022, G. Amato, V. Bartalesi, D. Bianchini, C. Gennaro, and R. Torlone, Eds., in CEUR Workshop Proceedings, vol. 3194. CEUR-WS.org, 2022, pp. 522–529. [Online]. Available: https://ceur-ws.org/Vol-3194/paper61.pdf

[129]

G. Cima, M. Console, M. Lenzerini, and A. Poggi, ‘Monotone Abstractions in Ontology-Based Data Management’, in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, AAAI Press, 2022, pp. 5556–5563. doi: 10.1609/aaai.v36i5.20495.

[130]

G. Cima, M. Console, M. Lenzerini, and A. Poggi, ‘Epistemic Disjunctive Datalog for Querying Knowledge Bases’, in Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, B. Williams, Y. Chen, and J. Neville, Eds., AAAI Press, 2023, pp. 6280–6288. doi: 10.1609/aaai.v37i5.25773.

[131]

G. Cima, F. Croce, and M. Lenzerini, ‘Query Definability and Its Approximations in Ontology-based Data Management’, in CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 – 5, 2021, G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, and H. Tong, Eds., ACM, 2021, pp. 271–280. doi: 10.1145/3459637.3482466.

[132]

G. Cima, A. Poggi, and M. Lenzerini, ‘The notion of Abstraction in Ontology-based Data Management’, Artificial Intelligence, vol. 323, p. 103976, 2023, doi: https://doi.org/10.1016/j.artint.2023.103976.

[133]

T. Cimpeanu, F. C. Santos, L. M. Pereira, T. Lenaerts, and T. A. Han, ‘Artificial intelligence development races in heterogeneous settings’, Scientific Reports, vol. 12, no. 1, 2022.

[134]

C. Cintrano, J. Ferrer, M. López-Ibáñez, and E. Alba, ‘Hybridization of Racing Methods with Evolutionary Operators for Simulation Optimization of Traffic Lights Programs’, in Evolutionary Computation in Combinatorial Optimization – 21st European Conference, EvoCOP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 12692. Springer, 2021, pp. 17–33. doi: 10.1007/978-3-030-72904-2_2.

[135]

C. Cintrano, J. Ferrer, M. López-Ibáñez, and E. Alba, ‘Hybridization of Evolutionary Operators with Elitist Iterated Racing for the Simulation Optimization of Traffic Lights Programs’, Evolutionary Computation, pp. 1–21, Aug. 2022, doi: 10.1162/evco_a_00314.

[136]

C. Cintrano and J. Toutouh, ‘Multiobjective Electric Vehicle Charging Station Locations in a City Scale Area: Malaga Study Case’, in Applications of Evolutionary Computation – 25th European Conference, EvoApplications 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20-22, 2022, Proceedings, J. L. J. Laredo, J. I. Hidalgo, and K. O. Babaagba, Eds., in Lecture Notes in Computer Science, vol. 13224. Springer, 2022, pp. 584–600. doi: 10.1007/978-3-031-02462-7_37.

[137]

C. Cintrano, J. Toutouh, and E. Alba, ‘Citizen Centric Optimal Electric Vehicle Charging Stations Locations in a Full City: Case of Malaga’, in Advances in Artificial Intelligence, E. Alba, G. Luque, F. Chicano, C. Cotta, D. Camacho, M. Ojeda-Aciego, S. Montes, A. Troncoso, J. Riquelme, and R. Gil-Merino, Eds., Cham: Springer International Publishing, 2021, pp. 247–257.

[138]

C. Cintrano, J. Toutouh, and S. Nesmachnow, ‘User-centric multiobjective location of electric vehicle charging stations in a city-scale area’, in 2021 Ivannikov Ispras Open Conference (ISPRAS), 2021, pp. 89–95. doi: 10.1109/ISPRAS53967.2021.00017.

[139]

R. Cipollone, G. D. Giacomo, M. Favorito, L. Iocchi, and F. Patrizi, ‘Exploiting Multiple Levels of Abstractions in Episodic RL via Reward Shaping’, in PRL Workshop, 2022.

[140]

R. Cipollone, G. D. Giacomo, M. Favorito, L. Iocchi, and F. Patrizi, ‘Exploiting Multiple Abstractions in Episodic RL via Reward Shaping’, in AAAI, AAAI Press, 2023, pp. 7227–7234. doi: 10.1609/aaai.v37i6.25881.

[141]

R. Cipollone, G. D. Giacomo, M. Favorito, L. Iocchi, and F. Patrizi, ‘Exploiting Multiple Abstractions in Episodic RL via Reward Shaping’, CoRR, vol. abs/2303.00516, 2023.

[142]

R. Cipollone, A. Jonsson, A. Ronca, and M. S. Talebi, ‘Beyond Markovian RL: Efficient Offline RL in Regular Decision Processes’, in European Workshop on Reinforcement Learning (EWRL), 2023.

[143]

R. Cipollone, A. Jonsson, A. Ronca, and M. S. Talebi, ‘Provably Efficient Offline Reinforcement Learning in Regular Decision Processes’, in Proceedings of Neural Information Processing Systems (NeurIPS), 2023.

[144]

G. Ciravegna et al., ‘Logic Explained Networks’, Artif. Intell., vol. 314, p. 103822, 2023, doi: 10.1016/j.artint.2022.103822.

[145]

R. Ciucanu, A. Delabrouille, P. Lafourcade, and M. Soare, ‘Secure Protocols for Best Arm Identification in Federated Stochastic Multi-Armed Bandits’, IEEE Transactions on Dependable and Secure Computing (TDSC), 2022.

[146]

R. Ciucanu, P. Lafourcade, M. Lombard-Platet, and M. Soare, ‘Secure Protocols for Cumulative Reward Maximization in Stochastic Multi-Armed Bandits’, Journal of Computer Security (JCS), 2022.

[147]

R. Ciucanu, P. Lafourcade, G. Marcadet, and M. Soare, ‘SAMBA: A Generic Framework for Secure Federated Multi-Armed Bandits’, J. Artif. Intell. Res., vol. 73, pp. 737–765, 2022, doi: 10.1613/jair.1.13163.

[148]

A. de Colnet and P. Marquis, ‘On the Complexity of Enumerating Prime Implicants from Decision-DNNF Circuits’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 2583–2590.

[149]

M. Console, G. D. Giacomo, M. Lenzerini, and M. Namici, ‘Intensional and Extensional Views in DL-Lite Ontologies’, in IJCAI, 2021.

[150]

M. Console, P. G. Kolaitis, and A. Pieris, ‘Model-theoretic Characterizations of Rule-based Ontologies’, in Proceedings of the 34th International Workshop on Description Logics (DL 2021) part of Bratislava Knowledge September (BAKS 2021), Bratislava, Slovakia, September 19th to 22nd, 2021, M. Homola, V. Ryzhikov, and R. A. Schmidt, Eds., in CEUR Workshop Proceedings, vol. 2954. CEUR-WS.org, 2021. [Online]. Available: http://ceur-ws.org/Vol-2954/paper-10.pdf

[151]

M. C. Cooper, A. Herzig, F. Maffre, F. Maris, E. Perrotin, and P. Régnier, ‘A Lightweight Epistemic Logic and its Application to Planning’, Artificial Intelligence, vol. 298, p. 103437, 2021, doi: 10.1016/j.artint.2020.103437.

[152]

Y. Coppens, D. Steckelmacher, C. M. Jonker, and A. Nowé, ‘Synthesising Reinforcement Learning Policies Through Set-Valued Inductive Rule Learning’, in Trustworthy AI – Integrating Learning, Optimization and Reasoning – First International Workshop, TAILOR 2020, Virtual Event, September 4-5, 2020, Revised Selected Papers, F. Heintz, M. Milano, and B. O’Sullivan, Eds., in Lecture Notes in Computer Science, vol. 12641. Springer, 2020, pp. 163–179. doi: 10.1007/978-3-030-73959-1_15.

[153]

A. B. Corrêa, G. Francès, F. Pommerening, and M. Helmert, ‘Delete-Relaxation Heuristics for Lifted Classical Planning’, in ICAPS, 2021.

[154]

A. B. Corrêa, F. Pommerening, M. Helmert, and G. Francès, ‘The FF Heuristic for Lifted Classical Planning’, in AAAI, 2022, pp. 9716–9723.

[155]

A. B. Corrêa and J. Seipp, ‘Best-First Width Search for Lifted Classical Planning’, in ICAPS, 2022, pp. 11–15.

[156]

S. Corrente, S. Greco, B. Matarazzo, and R. Słowiński, ‘Explainable interactive evolutionary multiobjective optimization’, Omega, vol. 122, p. 102925, 2024, doi: https://doi.org/10.1016/j.omega.2023.102925.

[157]

S. Coste-Marquis and P. Marquis, ‘On Belief Change for Multi-Label Classifier Encodings’, in IJCAI, ijcai.org, 2021, pp. 1829–1836.

[158]

M. Couceiro, L. Haddad, and V. Lagerkvist, ‘A Survey on the Fine-grained Complexity of Constraint Satisfaction Problems Based on Partial Polymorphisms’, J. Multiple Valued Log. Soft Comput., vol. 38, no. 1–2, pp. 115–136, 2022.

[159]

M. Couceiro and E. Lehtonen, ‘A Galois Framework for the Study of Analogical Classifiers’, in Proceedings of the Workshop on the Interactions between Analogical Reasoning and Machine Learning (International Joint Conference on Artificial Intelligence – European Conference on Artificial Intelligence (IJAI-ECAI 2022)), Vienna, Austria, July 23, 2022, 2022, pp. 51–61.

[160]

M. Couceiro, E. Lehtonen, L. Miclet, H. Prade, and G. Richard, ‘When Nominal Analogical Proportions Do Not Fail’, in Scalable Uncertainty Management – 14th International Conference, SUM 2020, Bozen-Bolzano, Italy, September 23-25, 2020, Proceedings, in Lecture Notes in Computer Science, vol. 12322. Springer, 2020, pp. 68–83.

[161]

Z. A. Dahi and E. Alba, ‘Metaheuristics on quantum computers: Inspiration, simulation and real execution’, Future Generation Computer Systems, vol. 130, pp. 164–180, 2022, doi: https://doi.org/10.1016/j.future.2021.12.015.

[162]

Z. A. Dahi, E. Alba, R. Gil-Merino, F. Chicano, and and G. Luque, ‘A Survey on Quantum Computer Simulators’, in 19th Conference of the Spanish Association for Artificial Intelligence, CAEPIA, CAEPIA, 2021, pp. 941–946.

[163]

Z. A. Dahi, E. Alba, and G. Luque, ‘A takeover time-driven adaptive evolutionary algorithm for mobile user tracking in pre-5G cellular networks’, Applied Soft Computing, vol. 116, p. 107992, 2022, doi: https://doi.org/10.1016/j.asoc.2021.107992.

[164]

Z. A. Dahi, F. Chicano, G. Luque, and E. Alba, ‘Genetic Algorithm for Qubits Initialisation in Noisy Intermediate-Scale Quantum Machines: The IBM Case Study’, in Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 1164–1172. doi: 10.1145/3512290.3528830.

[165]

Z. A. Dahi, G. Luque, and E. Alba, ‘A Machine Learning-Based Approach for Economics-Tailored Applications: The Spanish Case Study’, in Applications of Evolutionary Computation: 25th European Conference, EvoApplications 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022, Proceedings, Berlin, Heidelberg: Springer-Verlag, 2022, pp. 567–583. doi: 10.1007/978-3-031-02462-7_36.

[166]

Z. A. Dahi and J. Á. Morell, ‘Models and Solvers for Coverage Optimisation in Cellular Networks: Review and Analysis’, in 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 2022, pp. 312–319. doi: 10.1109/SETIT54465.2022.9875463.

[167]

P. Danassis, Z. D. Erden, and B. Faltings, ‘Exploiting environmental signals to enable policy correlation in large-scale decentralized systems’, Autonomous Agents and Multi-Agent Systems, vol. 36, no. 1, p. 13, 2022.

[168]

P. Danassis, A. Triastcyn, and B. Faltings, ‘A Distributed Differentially Private Algorithm for Resource Allocation in Unboundedly Large Settings’, in Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems, in AAMAS ’22. 2022.

[169]

I. D. F. Daniela De Canditiis, ‘Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames’, Mathematics, vol. 9, no. 11, p. 1288, 2021.

[170]

A. Darwiche and P. Marquis, ‘On Quantifying Literals in Boolean Logic and Its Applications to Explainable AI’, JAIR, vol. 72, pp. 285–328, 2021.

[171]

A. Darwiche and P. Marquis, ‘On Quantifying Literals in Boolean Logic and its Applications to Explainable AI (Extended Abstract)’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 5718–5721.

[172]

T. De Bie, L. De Raedt, J. Hernández-Orallo, H. H. Hoos, P. Smyth, and C. K. Williams, ‘Automating Data Science: Prospects and Challenges’, Communications of the ACM, 2021.

[173]

H. De Bruijn, M. Warnier, and M. Janssen, ‘The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making’, Government Information Quarterly, vol. 101666, p. Online, 2021, doi: https://doi.org/10.1016/j.giq.2021.101666.

[174]

A. De Filippo, A. Borghesi, A. Boscarino, and M. Milano, ‘HADA: An automated tool for hardware dimensioning of AI applications’, Knowledge-Based Systems, vol. 251, p. 109199, 2022.

[175]

G. De Giacomo and M. Favorito, ‘Compositional Approach to Translate LTLf/LDLf into Deterministic Finite Automata’, in ICAPS, 2021.

[176]

G. De Giacomo, M. Favorito, F. Leotta, M. Mecella, and L. Silo, ‘Modeling resilient cyber-physical processes and their composition from digital twins via Markov Decision Processes’, in CEUR. 2022.

[177]

G. De Giacomo, P. Felli, B. Logan, F. Patrizi, and S. Sardiña, ‘Situation Calculus for Controller Synthesis in Manufacturing Systems with First-Order State Representation’, Artificial Intelligence, 2022.

[178]

J. Delaunay, L. Galárraga, and C. Largouët, ‘When Should We Use Linear Explanations’, in CIKM 2022 – International Conference on Knowledge Management, Atlanta, USA, Oct. 2022.

[179]

J. P. Delgrande, J. Sack, G. Lakemeyer, and M. Pagnucco, ‘Epistemic Logic of Likelihood and Belief’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 2599–2605. [Online]. Available: https://doi.org/10.24963/ijcai.2022/360

[180]

D. S. Dhami, M. Das, and S. Natarajan, ‘Beyond Simple Images: Human Knowledge-Guided GANs for Clinical Data Generation’, in Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021, Online event, November 3-12, 2021, 2021, pp. 247–257.

[181]

D. S. Dhami, S. Yan, G. Kunapuli, and S. Natarajan, ‘Non-parametric Learning of Embeddings for Relational Data Using Gaifman Locality Theorem’, in Inductive Logic Programming – 30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings, Springer, 2021, pp. 95–110.

[182]

L. Di Liello, P. Ardino, J. Gobbi, P. Morettin, S. Teso, and A. Passerini, ‘Efficient Generation of Structured Objects with Constrained Adversarial Networks’, Advances in Neural Information Processing Systems, vol. 33, 2020.

[183]

G. V. G. Díaz-Munío et al., ‘Europarl-ASR: A Large Corpus of Parliamentary Debates for Streaming ASR Benchmarking and Speech Data Filtering/Verbatimization’, in Interspeech, ISCA, 2021.

[184]

M. Diligenti, F. Giannini, S. Fioravanti, C. Graziani, M. Falaschi, and G. Marra, ‘Enhancing Embedding Representations of Biomedical Data using Logic Knowledge’, in International Joint Conference on Neural Networks, IJCNN 2023, Gold Coast, Australia, June 18-23, 2023, IEEE, 2023, pp. 1–8. doi: 10.1109/IJCNN54540.2023.10191706.

[185]

E. F. Domingos, J. Grujic, J. C. Burguillo, F. C. Santos, and T. Lenaerts, ‘Modeling behavioral experiments on uncertainty and cooperation with population-based reinforcement learning’, Simul. Model. Pract. Theory, vol. 109, p. 102299, 2021.

[186]

M. Á. Domínguez-Ríos, F. Chicano, and E. Alba, ‘Effective anytime algorithm for multiobjective combinatorial optimization problems’, Information Sciences, vol. 565, pp. 210–228, 2021, doi: https://doi.org/10.1016/j.ins.2021.02.074.

[187]

M. Á. Domínguez-Ríos, F. Chicano, and E. Alba, ‘Improving Search Efficiency and Diversity of Solutions in Multiobjective Binary Optimization by Using Metaheuristics Plus Integer Linear Programming’, in Applications of Evolutionary Computation, Cham: Springer International Publishing, 2021, pp. 242–257.

[188]

I. Donadello, A. Hunter, S. Teso, and M. Dragoni, ‘Machine Learning for Utility Prediction in Argument-Based Computational Persuasion’, in AAAI, AAAI Press, 2022.

[189]

F. Doolaard and N. Yorke-Smith, ‘Online Learning of Variable Ordering Heuristics for Constraint Optimisation Problems’, Annals of Mathematics and Artificial Intelligence, 2022.

[190]

D. Drexler, J. Seipp, and H. Geffner, ‘Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches’, in KR, 2021.

[191]

D. Drexler, J. Seipp, and H. Geffner, ‘Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width’, in ICAPS, AAAI Press, 2022, pp. 62–70.

[192]

D. Drexler, J. Seipp, and H. Geffner, ‘Learning Hierarchical Policies by Iteratively Reducing the Width of Sketch Rules’, in Proceedings of the Twentieth International Conference on Principles of Knowledge Representation and Reasoning (KR 2023), 2023.

[193]

D. Drexler, J. Seipp, and D. Speck, ‘Subset-Saturated Transition Cost Partitioning’, in ICAPS, 2021, pp. 131–139.

[194]

R. van Driel, E. Demirovic, and N. Yorke-Smith, ‘Learning Variable Activity Initialisation for Lazy Clause Generation Solvers’, in Integration of Constraint Programming, Artificial Intelligence, and Operations Research – 18th International Conference, CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 12735. Springer, 2021, pp. 62–71. doi: 10.1007/978-3-030-78230-6_4.

[195]

M. Dumas et al., ‘AI-augmented Business Process Management Systems: A Research Manifesto’, ACM Trans. Manag. Inf. Syst., vol. 14, no. 1, p. 11:1-11:19, 2023.

[196]

D. Dushi, F. Naretto, and F. Pratesi, ‘Imagining the AI Landscape after the AI Act’, in Proceedings of the Workshops at the Second International Conference on Hybrid Human-Artificial Intelligence co-located with (HHAI 2023), in CEUR Workshop Proceedings, vol. 3456. CEUR-WS.org, 2023, pp. 1–6. [Online]. Available: https://ceur-ws.org/Vol-3456/preface1.pdf

[197]

N. Efthymiou and N. Yorke-Smith, ‘Predicting the Optimal Period for Cyclic Hoist Scheduling Problems’, in CPAIOR, in Lecture Notes in Computer Science, vol. 13884. Springer, 2023, pp. 238–253. doi: 10.1007/978-3-031-33271-5_16.

[198]

T. Eftimov et al., ‘Less is more: Selecting the right benchmarking set of data for time series classification’, Expert Syst. Appl., vol. 198, p. 116871, 2022.

[199]

K. Eggensperger et al., ‘HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO’, in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[200]

A. El Baz, I. Guyon, Z. Liu, J. N. van Rijn, S. Treguer, and J. Vanschoren, ‘Advances in MetaDL: AAAI 2021 challenge and workshop’, Proceedings of Machine Learning Research, 2021, [Online]. Available: https://proceedings.mlr.press/v140/el-baz21a.html

[201]

A. El Baz, I. Guyon, Z. Liu, J. N. van Rijn, S. Treguer, and J. Vanschoren, ‘MetaDL challenge design and baseline results’, in AAAI Workshop on Meta-Learning and MetaDL Challenge, I. Guyon, J. N. van Rijn, S. Treguer, and J. Vanschoren, Eds., in Proceedings of Machine Learning Research, vol. 140. PMLR, 2021, pp. 1–16.

[202]

F. Errica, D. Bacciu, and A. Micheli, ‘Graph Mixture Density Networks’, in Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research, vol. 139. PMLR, Jul. 2021, pp. 3025–3035.

[203]

F. Errica, G. Iadarola, F. Martinelli, F. Mercaldo, and A. Micheli, ‘Robust Malware Classification via Deep Graph Networks on Call Graph Topologies’, in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2021.

[204]

M. Esteban, J. Toutouh, and S. Nesmachnow, ‘Parallel/Distributed Intelligent Hyperparameters Search for Generative Artificial Neural Networks’, in High Performance Computing, H. Jagode, H. Anzt, H. Ltaief, and P. Luszczek, Eds., Cham: Springer International Publishing, 2021, pp. 297–313. doi: https://doi.org/10.1007/978-3-030-90539-2_20.

[205]

S. Fait, S. Pighin, A. Passerini, F. Pavani, and K. Tentori, ‘Sensory and multisensory reasoning: Is Bayesian updating modality-dependent?’, Cognition, vol. 234, p. 105355, 2023, doi: https://doi.org/10.1016/j.cognition.2022.105355.

[206]

Q. Feng, D. Liu, V. Belle, and G. Lakemeyer, ‘A Logic of Only-Believing over Arbitrary Probability Distributions’, in Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 – 2 June 2023, ACM, 2023, pp. 355–363. [Online]. Available: https://dl.acm.org/doi/10.5555/3545946.3598658

[207]

P. Ferber, L. Cohen, J. Seipp, and T. Keller, ‘Learning and Exploiting Progress States in Greedy Best-First Search’, in IJCAI, 2022, pp. 4740–4746.

[208]

P. Ferber, F. Geißer, F. Trevizan, M. Helmert, and J. Hoffmann, ‘Neural Network Heuristic Functions for Classical Planning: Bootstrapping and Comparison to Other Methods’, in ICAPS, 2022, pp. 583–587.

[209]

P. Ferber and J. Seipp, ‘Explainable Planner Selection for Classical Planning’, in AAAI, AAAI Press, 2022, pp. 9741–9749.

[210]

E. Fernández Domingos, F. C. Santos, and T. Lenaerts, ‘EGTtools: Evolutionary game dynamics in Python’, iScience, vol. 26(4), p. 103921, 2023.

[211]

E. Fernández Domingos, I. Terrucha, R. Suchon, J. Grujić, J. C. Burguillo, and T. Lenaerts, ‘Delegation to artificial agents fosters prosocial behaviors in the collective risk dilemma’, Scientific Reports, vol. 12, no. 1, 2022.

[212]

S. Fioravanti, A. Zugarini, F. Giannini, L. Rigutini, M. Maggini, and M. Diligenti, ‘Linguistic Feature Injection for Efficient Natural Language Processing’, in International Joint Conference on Neural Networks, IJCNN 2023, Gold Coast, Australia, June 18-23, 2023, IEEE, 2023, pp. 1–7. doi: 10.1109/IJCNN54540.2023.10191680.

[213]

M. Fisher, V. Mascardi, K. Y. Rozier, B.-H. Schlingloff, M. Winikoff, and N. Yorke-Smith, ‘Towards a framework for certification of reliable autonomous systems’, Auton. Agents Multi Agent Syst., vol. 35, no. 1, p. 8, 2021, doi: 10.1007/s10458-020-09487-2.

[214]

D. Flores, E. Hemberg, J. Toutouh, and U.-M. O’Reilly, ‘Coevolutionary generative adversarial networks for medical image augumentation at scale’, in GECCO ’22: Genetic and Evolutionary Computation Conference, Boston, Massachusetts, USA, July 9 – 13, 2022, J. E. Fieldsend and M. Wagner, Eds., ACM, 2022, pp. 367–376. doi: 10.1145/3512290.3528742.

[215]

M. Fontana, F. Naretto, and A. Monreale, ‘A new approach for cross-silo federated learning and its privacy risks’, in 18th International Conference on Privacy, Security and Trust, PST 2021, Auckland, New Zealand, December 13-15, 2021, IEEE, 2021, pp. 1–10. doi: 10.1109/PST52912.2021.9647753.

[216]

L. G. Foo, T. Li, H. Rahmani, Q. Ke, and J. Liu, ‘Unified Pose Sequence Modeling’, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2023, pp. 13019–13030.

[217]

R. Fraga Pereira, F. Fuggitti, and G. De Giacomo, ‘Recognizing LTLf/PLTLf Goals in Fully Observable Non-Deterministic Domain Models’, CoRR, vol. abs/2103.11692, Mar. 2021.

[218]

G. Francès, B. Bonet, and H. Geffner, ‘Learning General Planning Policies from Small Examples Without Supervision’, in AAAI, 2021, pp. 11801–11808.

[219]

D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo, ‘Hierarchies of reward machines’, in International Conference on Machine Learning (ICML), 2023, pp. 10494–10541.

[220]

C. Galindo, S. Pérez, and J. Silva, ‘Program slicing of Java programs’, Journal of Logical and Algebraic Methods in Programming, vol. 2023, no. 1, Oct. 2023, doi: https://doi.org/10.1016/j.jlamp.2022.100826.

[221]

E. Gamba, B. Bogaerts, and T. Guns, ‘Efficiently Explaining CSPs with Unsatisfiable Subset Optimization (extended algorithms and examples)’, CoRR, vol. abs/2303.11712, 2023, [Online]. Available: https://doi.org/10.48550/arXiv.2303.11712

[222]

J. Gan, E. Elkind, S. Kraus, and M. J. Wooldridge, ‘Defense coordination in security games: Equilibrium analysis and mechanism design’, Artif. Intell., vol. 313, p. 103791, 2022, doi: 10.1016/j.artint.2022.103791.

[223]

M. Garcia-Piqueras and J. Hernández-Orallo, ‘Optimal Teaching Curricula with Compositional Simplicity Priors’, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2021, pp. 705–721.

[224]

R. Gaudel, L. Galárraga, J. Delaunay, L. Rozé, and V. Bhargava, ‘s-LIME: Reconciling Locality and Fidelity in Linear Explanations’, in IDA 2022 – Symposium on Intelligent Data Analysis, Rennes, France, Apr. 2022, pp. 1–13. [Online]. Available: https://hal.inria.fr/hal-03741042

[225]

A. Gavornik, J. Podroužek, M. Mesarčík, S. Solarova, S. Oresko, and M. Bielikova, ‘Utilising Assessment List for Trustworthy AI: Three Areas of Improvement’, in : 2nd Workshop on Adverse Impacts and Collateral Effects of Artificial Intelligence Technologies, H. H. Esma Aïmeur Nicolás E. Díaz Ferreyra, Ed., International Joint Conferences on Artificial Intelligence Organization, Jul. 2022, pp. 37–45. [Online]. Available: https://ceur-ws.org/Vol-3275/paper3.pdf

[226]

H. Geffner, ‘Target Languages (vs. Inductive Biases) for Learning to Act and Plan’, in AAAI, AAAI Press, 2022, pp. 12326–12333.

[227]

S. Geisler et al., ‘Knowledge-Driven Data Ecosystems Toward Data Transparency’, ACM J. Data Inf. Qual., vol. 14, no. 1, p. 3:1-3:12, 2022, doi: 10.1145/3467022.

[228]

E. Gentili, A. Bizzarri, D. Azzolini, R. Zese, and F. Riguzzi, ‘Regularization in Probabilistic Inductive Logic Programming’, in ILP, in Lecture Notes in Artificial Intelligence. Springer, 2023.

[229]

A. Georgara, J. A. Rodríguez-Aguilar, and C. Sierra, ‘Towards a Competence-Based Approach to Allocate Teams to Tasks’, in Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2021, pp. 1504–1506.

[230]

A. Georgara, J. A. Rodríguez-Aguilar, and C. Sierra, ‘Allocating teams to tasks: an anytime heuristic competence-based approach’, in Proceedings of the 9th European Conference on MultiAgent Systems, 2022.

[231]

A. Georgara et al., ‘An Anytime Heuristic Algorithm for Allocating Many Teams to Many Tasks’, in Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2022, pp. 1598–1600.

[232]

A. Georgara, J. A. Rodríguez-Aguilar, and C. Sierra, ‘Building Contrastive Explanations for Multi-agent Team Formation’, in Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2022, pp. 516–524.

[233]

A. Georgara, J. A. Rodríguez-Aguilar, and C. Sierra, ‘Privacy-Aware Explanations for Team Formation’, in Proceedings of the 24th International Conference on Principles and Practice of Multi-Agent Systems, 2022.

[234]

I. L. Geursen, B. F. Santos, and N. Yorke-Smith, ‘Fleet planning under demand and fuel price uncertainty using actor–critic reinforcement learning’, Journal of Air Transport Management, vol. 109, p. 102397, 2023.

[235]

G. D. Giacomo, M. Favorito, and F. Fuggitti, ‘Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic: A Polynomial Reduction to Standard Planning’, CoRR, vol. abs/2204.09960, 2022.

[236]

G. D. Giacomo, M. Favorito, L. Iocchi, and F. Patrizi, ‘Domain-Independent Reward Machines for Modular Integration of Planning and Learning’, in PRL Workshop, 2021.

[237]

G. D. Giacomo, M. Favorito, F. Leotta, M. Mecella, F. Monti, and L. Silo, ‘AIDA: A Tool for Resiliency in Smart Manufacturing’, in CAiSE Forum, in Lecture Notes in Business Information Processing, vol. 477. Springer, 2023, pp. 112–120.

[238]

G. D. Giacomo, M. Favorito, F. Leotta, M. Mecella, and L. Silo, ‘Digital twin composition in smart manufacturing via Markov decision processes’, Comput. Ind., vol. 149, p. 103916, 2023.

[239]

G. D. Giacomo, M. Favorito, J. Li, M. Y. Vardi, S. Xiao, and S. Zhu, ‘LTLf Synthesis as AND-OR Graph Search: Knowledge Compilation at Work’, in IJCAI, ijcai.org, 2022, pp. 2591–2598.

[240]

G. D. Giacomo, M. Favorito, M. Mecella, F. Leotta, and L. Silo, ‘Digital Twins Composition via Markov Decision Processes’, in ITAL-IA Workshop, 2022.

[241]

G. D. Giacomo, P. Felli, B. Logan, F. Patrizi, and S. Sardiña, ‘Situation calculus for controller synthesis in manufacturing systems with first-order state representation’, Artif. Intell., vol. 302, p. 103598, 2022.

[242]

G. D. Giacomo, P. Felli, M. Montali, and G. Perelli, ‘HyperLDLf: a Logic for Checking Properties of Finite Traces Process Logs’, in IJCAI, 2021.

[243]

G. D. Giacomo, D. Fried, F. Patrizi, and S. Zhu, ‘Mimicking Behaviors in Separated Domains’, J. Artif. Intell. Res., vol. 77, pp. 1087–1112, 2023.

[244]

G. D. Giacomo, F. Fuggitti, F. M. Maggi, A. Marrella, and F. Patrizi, ‘A tool for declarative Trace Alignment via automated planning’, Softw. Impacts, vol. 16, p. 100505, 2023, doi: 10.1016/j.simpa.2023.100505.

[245]

G. D. Giacomo and Y. Lespérance, ‘The Nondeterministic Situation Calculus’, in KR, 2021.

[246]

G. D. Giacomo, R. D. Masellis, F. M. Maggi, and M. Montali, ‘Monitoring Constraints and Metaconstraints with Temporal Logics on Finite Traces’, ACM Trans. Softw. Eng. Methodol., vol. 31, no. 4, p. 68:1-68:44, 2022.

[247]

G. D. Giacomo, A. Murano, F. Patrizi, and G. Perelli, ‘Timed Trace Alignment with Metric Temporal Logic over Finite Traces’, in KR, 2021.

[248]

G. D. Giacomo, X. Oriol, R. Rosati, and D. F. Savo, ‘Instance-Level Update in DL-Lite Ontologies through First-Order Rewriting’, JAIR, vol. 70, pp. 1335–1371, 2021, doi: 10.1613/jair.1.12414.

[249]

G. D. Giacomo, G. Parretti, and S. Zhu, ‘LTLf Best-Effort Synthesis in Nondeterministic Planning Domains’, CoRR, vol. abs/2308.15188, 2023.

[250]

G. D. Giacomo, G. Parretti, and S. Zhu, ‘Symbolic LTLf Best-Effort Synthesis’, Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), 2023.

[251]

G. D. Giacomo, G. Parretti, and S. Zhu, ‘Symbolic LTLf Best-Effort Synthesis’, CoRR, vol. abs/2308.15178, 2023.

[252]

G. D. Giacomo, G. Parretti, and S. Zhu, ‘Symbolic sc ltlf Best-Effort Synthesis’, in EUMAS, in Lecture Notes in Computer Science, vol. 14282. Springer, 2023, pp. 228–243.

[253]

G. D. Giacomo and G. Perelli, ‘Behavioral QLTL’, CoRR, vol. abs/2102.11184, 2021.

[254]

G. D. Giacomo and G. Perelli, ‘Behavioral QLTL’, in EUMAS, in Lecture Notes in Computer Science, vol. 14282. Springer, 2023, pp. 133–149.

[255]

G. D. Giacomo, A. D. Stasio, G. Perelli, and S. Zhu, ‘Synthesis with Mandatory Stop Actions’, in KR, 2021.

[256]

G. D. Giacomo, A. D. Stasio, L. M. Tabajara, M. Vardi, and S. Zhu, ‘Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis’, in IJCAI, 2021.

[257]

S. Giancani, R. Albertoni, and C. E. Catalano, ‘Quality of word and concept embeddings in targetted biomedical domains’, Heliyon, vol. 9, no. 6, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16818.

[258]

F. Giannini, M. Diligenti, M. Maggini, M. Gori, and G. Marra, ‘T-norms driven loss functions for machine learning’, Appl. Intell., vol. 53, no. 15, pp. 18775–18789, 2023, doi: 10.1007/s10489-022-04383-6.

[259]

P. Gijsbers et al., ‘AMLB: an AutoML Benchmark’, CoRR, vol. abs/2207.12560, 2022, [Online]. Available: https://doi.org/10.48550/arXiv.2207.12560

[260]

F. Giunchiglia, L. Erculiani, and A. Passerini, ‘Towards Visual Semantics’, SN COMPUT. SCI., vol. 2, no. 446, 2021, doi: https://doi.org/10.1007/s42979-021-00839-7.

[261]

J. Gong, L. G. Foo, Z. Fan, Q. Ke, H. Rahmani, and J. Liu, ‘DiffPose: Toward More Reliable 3D Pose Estimation’, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2023.

[262]

A. Gretkowski, D. Wisniewski, and A. Lawrynowicz, ‘Should We Afford Affordances? Injecting ConceptNet Knowledge into BERT-Based Models to Improve Commonsense Reasoning Ability’, in Knowledge Engineering and Knowledge Management – 23rd International Conference, EKAW 2022, Bolzano, Italy, September 26-29, 2022, Proceedings, in Lecture Notes in Computer Science, vol. 13514. Springer, 2022, pp. 97–104. doi: 10.1007/978-3-031-17105-5_7.

[263]

R. Guidotti, ‘Evaluating local explanation methods on ground truth’, Artif. Intell., vol. 291, p. 103428, 2021, doi: 10.1016/j.artint.2020.103428.

[264]

R. Guidotti and M. D’Onofrio, ‘Matrix Profile-Based Interpretable Time Series Classifier’, Frontiers Artif. Intell., vol. 4, p. 699448, 2021, doi: 10.3389/frai.2021.699448.

[265]

R. Guidotti and A. Monreale, ‘Designing Shapelets for Interpretable Data-Agnostic Classification’, in AIES ’21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021, ACM, 2021, pp. 532–542. doi: 10.1145/3461702.3462553.

[266]

R. Guidotti, A. Monreale, D. Pedreschi, and F. Giannotti, ‘Principles of Explainable Artificial Intelligence’, in Explainable AI Within the Digital Transformation and Cyber Physical Systems, Springer, 2021, pp. 9–31.

[267]

R. Guidotti, A. Monreale, F. Spinnato, D. Pedreschi, and F. Giannotti, ‘Explaining Any Time Series Classifier’, in 2nd IEEE International Conference on Cognitive Machine Intelligence, CogMI 2020, Atlanta, GA, USA, October 28-31, 2020, IEEE, 2020, pp. 167–176. doi: 10.1109/CogMI50398.2020.00029.

[268]

R. Guidotti and S. Ruggieri, ‘Ensemble of Counterfactual Explainers’, in DS, in Lecture Notes in Computer Science, vol. 12986. Springer, 2021, pp. 358–368.

[269]

R. Guidotti and S. Viotto, ‘Interpretable Next Basket Prediction Boosted with Representative Recipes’, in 2nd IEEE International Conference on Cognitive Machine Intelligence, CogMI 2020, Atlanta, GA, USA, October 28-31, 2020, IEEE, 2020, pp. 62–71. doi: 10.1109/CogMI50398.2020.00018.

[270]

K. M. Gusmao, R. F. Pereira, A. G. Pereira, and F. Meneguzzi, ‘Inferring Agents Preferences as Priors for Probabilistic Goal Recognition’, CoRR, vol. abs/2102.11791, 2021.

[271]

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge, ‘Expressiveness and Nash Equilibrium in Iterated Boolean Games’, ACM Trans. Comput. Logic, vol. 22, no. 2, 2021, doi: 10.1145/3439900.

[272]

J. Gutierrez, S. Kowara, S. Kraus, T. Steeples, and M. J. Wooldridge, ‘Cooperative concurrent games’, Artif. Intell., vol. 314, p. 103806, 2023, doi: 10.1016/j.artint.2022.103806.

[273]

J. Gutierrez, A. Murano, G. Perelli, S. Rubin, T. Steeples, and M. J. Wooldridge, ‘Equilibria for games with combined qualitative and quantitative objectives’, Acta Informatica, vol. 58, no. 6, pp. 585–610, 2021.

[274]

D. Habering, T. Hofmann, and G. Lakemeyer, ‘Using Platform Models for a Guided Explanatory Diagnosis Generation for Mobile Robots’, in IJCAI, ijcai.org, 2021, pp. 1908–1914.

[275]

T. A. Han, L. M. Pereira, T. Lenaerts, and F. C. Santos, ‘Mediating artificial intelligence developments through negative and positive incentives’, PLoS ONE, vol. 16, no. 1, 2021.

[276]

T. L. Haoran Peng He Huang, Li Xu, Tianjiao Li, Jun Liu, Hossein Rahmani, Qiuhong Ke, Zhicheng Guo, Cong Wu, Rongchang Li, Mang Ye, Jiahao Wang, Jiaxu Zhang, Yuanzhong Liu, Tao He, Fuwei Zhang, Xianbin Liu, ‘The Multi-Modal Video Reasoning and Analyzing Competition’, in International Conference on Computer Vision- Workshop, 2021.

[277]

B. W. Haoxuan Qu Hossein Rahmani, Li Xu and J. Liu, ‘Recent Advances of Continual Learning in Computer Vision: An Overview’, CoRR, vol. abs/2109.11369, 2021.

[278]

T. Harada, E. Alba, and G. Luque, ‘A fresh approach to evaluate performance in distributed parallel genetic algorithms’, Applied Soft Computing, vol. 119, p. 108540, 2022, doi: https://doi.org/10.1016/j.asoc.2022.108540.

[279]

D. Heller, P. Ferber, J. Bitterwolf, M. Hein, and J. Hoffmann, ‘Neural Network Heuristic Functions: Taking Confidence into Account’, in SoCS, 2022, pp. 223–228.

[280]

M. Helmert, S. Sievers, A. Rovner, and A. B. Corrêa, ‘On the Complexity of Heuristic Synthesis for Satisficing Classical Planning: Potential Heuristics and Beyond’, in ICAPS, 2022, pp. 124–133.

[281]

A. Herzig, E. Lorini, and E. Perrotin, ‘A Computationally Grounded Logic of “Seeing-to-it-that”’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, L. D. Raedt, Ed., ijcai.org, 2022, pp. 2648–2654. doi: 10.24963/ijcai.2022/367.

[282]

A. Herzig, F. Maris, and E. Perrotin, ‘A Dynamic Epistemic Logic with Finite Iteration and Parallel Composition’, in Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021, Online event, November 3-12, 2021, 2021, pp. 676–680. doi: 10.24963/kr.2021/68.

[283]

A. Herzig and A. Yuste-Ginel, ‘Abstract Argumentation with Qualitative Uncertainty: An Analysis in Dynamic Logic’, in Logic and Argumentation – 4th International Conference, CLAR 2021, Hangzhou, China, October 20-22, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 13040. Springer, 2021, pp. 190–208. doi: 10.1007/978-3-030-89391-0_11.

[284]

A. Herzig and A. Yuste-Ginel, ‘Abstract Argumentation with Qualitative Uncertainty: An Analysis in Dynamic Logic’, in Logic and Argumentation – 4th International Conference, CLAR 2021, Hangzhou, China, October 20-22, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 13040. Springer, 2021, pp. 190–208. doi: 10.1007/978-3-030-89391-0_11.

[285]

A. Herzig and A. Yuste-Ginel, ‘Multi-Agent Abstract Argumentation Frameworks With Incomplete Knowledge of Attacks’, in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, ijcai.org, 2021, pp. 1922–1928. doi: 10.24963/ijcai.2021/265.

[286]

A. Herzig and A. Yuste-Ginel, ‘On the Epistemic Logic of Incomplete Argumentation Frameworks’, in Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021, Online event, November 3-12, 2021, 2021, pp. 681–685. doi: 10.24963/kr.2021/69.

[287]

J. Heyninck, G. Casini, T. Meyer, and U. Straccia, ‘Revising Typical Beliefs: One Revision to Rule Them All’, in Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning, KR-2023, Aug. 2023, pp. 355–364. doi: 10.24963/kr.2023/35.

[288]

Z. Hlávková, M. Homola, P. Koopmann, and J. Pukancová, ‘An API for DL Abduction Solvers’, in Description Logics, in CEUR Workshop Proceedings, vol. 3263. CEUR-WS.org, 2022.

[289]

M. Homola, J. Pukancová, I. Balintová, and J. Boborová, ‘Hybrid MHS-MXP ABox Abduction Solver: First Empirical Results’, in Description Logics, in CEUR Workshop Proceedings, vol. 3263. CEUR-WS.org, 2022.

[290]

M. Homola, J. Pukancová, J. Gablíková, and K. Fabianová, ‘Merge, Explain, Iterate’, in 33rd Int’l Workshop on Description Logics (DL 2020), CEUR-WS.org, 2020, pp. 1–11.

[291]

M. Horn, E. Demirovic, and N. Yorke-Smith, ‘Parallel Batch Processing for the Coating Problem’, in Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling, July 8-13, 2023, Prague, Czech Republic, S. Koenig, R. Stern, and M. Vallati, Eds., AAAI Press, 2023, pp. 171–179. doi: 10.1609/icaps.v33i1.27192.

[292]

M. Horn, E. Demirovic, and N. Yorke-Smith, ‘Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows’, in Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling, July 8-13, 2023, Prague, Czech Republic, S. Koenig, R. Stern, and M. Vallati, Eds., AAAI Press, 2023, pp. 491–499. doi: 10.1609/icaps.v33i1.27229.

[293]

K. Hu and D. Speck, ‘On Bidirectional Heuristic Search in Classical Planning: An Analysis of BAE*’, in SoCS, 2022, pp. 91–99.

[294]

W. T. Hutiri and A. Y. Ding, ‘Bias in Automated Speaker Recognition’, in Proceedings of ACM FAccT 2022, ​​Seoul, Republic of Korea, Jun. 2022.

[295]

C. Hvarfner, D. Stoll, A. Souza, L. Nardi, M. Lindauer, and F. Hutter, ‘{\textbackslashpi{BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization’, in International Conference on Learning Representations, 2022.

[296]

P. Höft, D. Speck, and J. Seipp, ‘Sensitivity Analysis for Saturated Post-hoc Optimization in Classical Planning’, in ECAI, IOS Press, 2023.

[297]

A. Ielo, M. Law, V. Fionda, F. Ricca, G. De Giacomo, and A. Russo, ‘Towards ILP-based LTLf passive learning’, 32nd International Conference on Inductive Logic Programming ILP2023, 2023.

[298]

G. Infante, A. Jonsson, and V. Gómez, ‘Optimal Hierarchical Average-Reward Linearly-solvable Markov Decision Processes’, in European Workshop on Reinforcement Learning (EWRL), 2023.

[299]

J. Iranzo-Sánchez, J. Civera, and A. Juan, ‘From Simultaneous to Streaming Machine Translation by Leveraging Streaming History’, in Proc. 60th Annual Meeting of the Association for Computational Linguistics Vol. 1: Long Papers (ACL 2022), Dublin (Ireland), Jan. 2022, pp. 6972–6985. doi: 10.18653/v1/2022.acl-long.480.

[300]

J. Iranzo-Sánchez et al., ‘Streaming cascade-based speech translation leveraged by a direct segmentation model’, Neural Networks, vol. 142, pp. 303–315, 2021.

[301]

J. Iranzo-Sánchez et al., ‘Streaming cascade-based speech translation leveraged by a direct segmentation model’, Neural Networks, vol. 142, pp. 303–315, Jan. 2021, doi: 10.1016/j.neunet.2021.05.013.

[302]

R. Jain, G. Ciravegna, P. Barbiero, F. Giannini, D. Buffelli, and P. Liò, ‘Extending Logic Explained Networks to Text Classification’, in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Association for Computational Linguistics, 2022, pp. 8838–8857. doi: 10.18653/v1/2022.emnlp-main.604.

[303]

A. Jankovic, D. Vermetten, A. Kostovska, J. de Nobel, T. Eftimov, and C. Doerr, ‘Trajectory-based Algorithm Selection with Warm-starting’, in CEC, IEEE, 2022, pp. 1–8.

[304]

A. J. Javier Iranzo-Sánchez Jorge Civera, ‘Stream-level Latency Evaluation for Simultaneous Machine Translation’, in Findings of the ACL: EMNLP 2021, Punta Cana (Dominican Republic), 2021, pp. 664–670. doi: 10.18653/v1/2021.findings-emnlp.58.

[305]

J. F.-M. Javier Segovia-Aguas and S. Jiménez, ‘Synthesis of Procedural Models for Deterministic Transition Systems’, in ECAI, 2023.

[306]

J. L. Jia Gong Zhipeng Fan, Qiuhong Ke, Hossein Rahmani, ‘Meta Agent Teaming Active Learning for Pose Estimation’, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[307]

J. L. Jianhong Pan Qichen Zheng, Zhipeng Fan, Hossein Rahmani, Qiuhong Ke, ‘GradAuto: Energy-oriented Attack on Dynamic Neural Networks’, in European Conference on Computer Vision, 2022.

[308]

J. Jorge, A. Giménez, J. A. Silvestre-Cerdà, J. Civera, A. Sanchis, and J. Alfons, ‘Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models and Interpolated Language Models’, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 30, pp. 148–161, Nov. 2021, doi: 10.1109/TASLP.2021.3133216.

[309]

P. Kaszuba et al., ‘Synthesizing Effective Diagnostic Models from Small Samples using Structural Machine Learning: a Case Study in Automating COVID-19 Diagnosis’, in GECCO Companion, ACM, 2023, pp. 727–730.

[310]

P. Kicki, T. Gawron, K. Cwian, M. Ozay, and P. Skrzypczy\’nski, ‘Learning from experience for rapid generation of local car maneuvers’, Engineering Applications of Artificial Intelligence, vol. 105, p. 104399, 2021, doi: 10.1016/j.engappai.2021.104399.

[311]

P. Kicki, P. Skrzypczy\’nski, and M. Ozay, ‘A New Approach to Design Symmetry Invariant Neural Networks’, in IEEE International Joint Conference on Neural Networks (IJCNN), Jul. 2021, pp. 1–8.

[312]

Y. Kim, R. Allmendinger, and M. López-Ibáñez, ‘Safe Learning and Optimization Techniques: Towards a Survey of the State of the Art’, in Trustworthy AI – Integrating Learning, Optimization and Reasoning – First International Workshop, TAILOR 2020, Virtual Event, September 4-5, 2020, Revised Selected Papers, in Lecture Notes in Computer Science, vol. 12641. Springer, 2020, pp. 123–139. doi: 10.1007/978-3-030-73959-1_12.

[313]

F. M. Kin Max Gusmão Ramon Fraga Pereira, ‘Inferring Agents Preferences as Priors for Probabilistic Goal Recognition’, in SPARK Workshop (ICAPS), 2021.

[314]

M. Kloska, G. Grmanova, and V. Rozinajova, ‘Expert enhanced dynamic time warping based anomaly detection’, Expert Systems with Applications, vol. 225, p. 120030, 2023, doi: https://doi.org/10.1016/j.eswa.2023.120030.

[315]

M. Kloska and V. Rozinajová, ‘Towards Symbolic Time Series Representation Improved by Kernel Density Estimators’, Trans. Large Scale Data Knowl. Centered Syst., vol. 50, pp. 25–45, 2021.

[316]

T. Klößner, F. Pommerening, T. Keller, and G. Röger, ‘Cost Partitioning Heuristics for Stochastic Shortest Path Problems’, in ICAPS, 2022, pp. 193–202.

[317]

T. Klößner, J. Seipp, and M. Steinmetz, ‘Cartesian Abstractions and Saturated Cost Partitioning in Probabilistic Planning’, in Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), 2023.

[318]

M. Kompan, P. Gaspar, J. Macina, M. Cimerman, and M. Bielikova, ‘Exploring Customer Price Preference and Product Profit Role in Recommender Systems’, in IEEE Intelligent Systems, IEEE, 2021, pp. 89–98.

[319]

A. Kostovska, J. Bogatinovski, S. Džeroski, D. Kocev, and P. Panov, ‘A catalogue with semantic annotations makes multilabel datasets FAIR’, Scientific Reports, vol. 12, no. 7267, pp. 1–11, 2022, doi: 10.1038/s41598-022-11316-3.

[320]

A. Kostovska et al., ‘PS-AAS: Portfolio Selection for Automated Algorithm Selection in Black-Box Optimization’, in AutoML Conference 2023, 2023.

[321]

A. Kostovska, C. Doerr, S. Dzeroski, D. Kocev, P. Panov, and T. Eftimov, ‘Explainable Model-specific Algorithm Selection for Multi-Label Classification’, in SSCI, IEEE, 2022, pp. 39–46.

[322]

A. Kostovska et al., ‘Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features’, in PPSN (1), in Lecture Notes in Computer Science, vol. 13398. Springer, 2022, pp. 46–60.

[323]

A. Kostovska, A. Jankovic, D. Vermetten, S. Dzeroski, T. Eftimov, and C. Doerr, ‘Comparing Algorithm Selection Approaches on Black-Box Optimization Problems’, in GECCO Companion, ACM, 2023, pp. 495–498.

[324]

A. Kostovska, D. Vermetten, C. Doerr, S. Dzeroski, P. Panov, and T. Eftimov, ‘OPTION: optimization algorithm benchmarking ontology’, in GECCO ’21: Genetic and Evolutionary Computation Conference, Companion Volume, Lille, France, July 10-14, 2021, ACM, 2021, pp. 239–240. doi: 10.1145/3449726.3459579.

[325]

A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and T. Eftimov, ‘OPTION: OPTImization Algorithm Benchmarking ONtology’, IEEE Transactions on Evolutionary Computation, pp. 1–1, 2022, doi: 10.1109/TEVC.2022.3232844.

[326]

A. Kostovska, D. Vermetten, S. Dzeroski, C. Doerr, P. Korosec, and T. Eftimov, ‘The importance of landscape features for performance prediction of modular CMA-ES variants’, in GECCO, ACM, 2022, pp. 648–656.

[327]

A. Kostovska, D. Vermetten, S. Dzeroski, P. Panov, T. Eftimov, and C. Doerr, ‘Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms’, in EvoApplications@EvoStar, in Lecture Notes in Computer Science, vol. 13989. Springer, 2023, pp. 253–268.

[328]

K. Krawiec and D. Kossinski, ‘Compositional genetic programming for symbolic regression’, in GECCO ’22: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, July 9 – 13, 2022, ACM, 2022, pp. 570–573. doi: 10.1145/3520304.3529077.

[329]

M. Kumar, S. Kolb, L. De Raedt, and S. Teso, ‘Learning Mixed-Integer Linear Programs from Contextual Examples’, Data Science Meets Optimization Workshop, 2021.

[330]

M. Kumar, S. Kolb, S. Teso, and L. D. Raedt, ‘Learning MAX-SAT from contextual examples for combinatorial optimisation’, Artif. Intell., vol. 314, p. 103794, 2023.

[331]

M. König, A. W. Bosman, H. H. Hoos, and J. N. van Rijn, ‘Critically Assessing the State of the Art in CPU-based Local Robustness Verification’, in Proceedings of the Workshop on Artificial Intelligence Safety 2023 (SafeAI 2023) co-located with the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI2023), 2023.

[332]

M. König, H. H. Hoos, and J. N. van Rijn, ‘Speeding Up Neural Network Verification via Automated Algorithm Configuration’, in ICLR workshop: Security and Safety in Machine Learning Systems, 2021.

[333]

M. König, H. H. Hoos, and J. N. van Rijn, ‘Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio’, Machine Learning, vol. 111, no. 9, 2022.

[334]

L. Lamanna, A. Saetti, L. Serafini, A. E. Gerevini, and P. Traverso, ‘Online Learning of Action Models for PDDL Planning’, in IJCAI, 2021.

[335]

L. Lamanna, L. Serafini, A. E. Gerevini, A. Saetti, and P. Traverso, ‘On-line Learning of Planning Domains from Sensor Data in PAL: Scaling up to Large State Spaces’, in AAAI, 2021.

[336]

L. Lamanna, L. Serafini, A. Saetti, A. Gerevini, and P. Traverso, ‘Online Grounding of Symbolic Planning Domains in Unknown Environments’, in KR, 2022.

[337]

C. Landi, F. Spinnato, R. Guidotti, A. Monreale, and M. Nanni, ‘Geolet: An Interpretable Model for Trajectory Classification’, in Advances in Intelligent Data Analysis XXI, Springer Nature Switzerland, 2023.

[338]

M. Lango and J. Stefanowski, ‘What makes multi-class imbalanced problems difficult? An experimental study’, Expert Systems with Applications, vol. 199, p. 116962, 2022.

[339]

A. L. D. Latour, B. Babaki, D. Fokkinga, M. Anastacio, H. H. Hoos, and S. Nijssen, ‘Exact stochastic constraint optimisation with applications in network analysis’, Artif. Intell., vol. 304, p. 103650, 2022.

[340]

D. Lembo, V. Santarelli, D. F. Savo, and G. D. Giacomo, ‘Graphol: A Graphical Language for Ontology Modeling Equivalent to OWL 2’, Future Internet, vol. 14, no. 3, p. 78, 2022.

[341]

M. Lenzerini, L. Lepore, and A. Poggi, ‘Metamodeling and metaquerying in OWL 2 QL’, Artificial Intelligence, vol. 292, p. 103432, 2021, doi: 10.1016/j.artint.2020.103432.

[342]

T. Li et al., ‘Dynamic Spatio-Temporal Specialization Learning For Fine-Grained Action Recognition’, in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IV, Berlin, Heidelberg: Springer-Verlag, 2022, pp. 386–403. doi: 10.1007/978-3-031-19772-7_23.

[343]

S. Lin, G. Behnke, S. Ondrcková, R. Barták, and P. Bercher, ‘On Total-Order HTN Plan Verification with Method Preconditions – An Extension of the CYK Parsing Algorithm’, in AAAI, AAAI Press, 2023, pp. 12041–12048. doi: 10.1609/aaai.v37i10.26420.

[344]

E. Liscio et al., ‘Value Inference in Sociotechnical Systems’, in Proceedings of the 22nd International Conference of Autonomous Agents and MultiAgent Systems, in AAMAS ’23. IFAAMAS, 2023, pp. 1774–1780.

[345]

D. Liu, Q. Feng, V. Belle, and G. Lakemeyer, ‘Concerning Measures in a First-order Logic with Actions and Meta-beliefs’, in Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, 2023, pp. 451–460. [Online]. Available: https://doi.org/10.24963/kr.2023/44

[346]

D. Liu and G. Lakemeyer, ‘Reasoning about Beliefs and Meta-Beliefs by Regression in an Expressive Probabilistic Action Logic’, in IJCAI, ijcai.org, 2021, pp. 1951–1958.

[347]

M. Lombardi, F. Baldo, A. Borghesi, and M. Milano, ‘An analysis of regularized approaches for constrained machine learning’, in International Workshop on the Foundations of Trustworthy AI Integrating Learning, Optimization and Reasoning, Springer, 2020, pp. 112–119.

[348]

X. Ma, H. Rahmani, Z. Fan, B. Yang, J. Chen, and J. Liu, ‘REMOTE: Reinforced Motion Transformation Network for Semi-Supervised 2D Pose Estimation in Videos’, in AAAI, 2022.

[349]

N. Maaroof, A. Moreno, A. Valls, M. Jabreel, and M. Szeląg, ‘A Comparative Study of Two Rule-Based Explanation Methods for Diabetic Retinopathy Risk Assessment’, Applied Sciences, vol. 12, no. 7, 2022, doi: 10.3390/app12073358.

[350]

B. Machín, S. Nesmachnow, and J. Toutouh, ‘Multi-target evolutionary latent space search of a generative adversarial network for human face generation’, in GECCO ’22: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, July 9 – 13, 2022, J. E. Fieldsend and M. Wagner, Eds., ACM, 2022, pp. 1878–1886. doi: 10.1145/3520304.3533992.

[351]

A. W. Maciej Falbogowski Jerzy Stefanowski, Zuzanna Trafas, ‘The impact of using constraints on counterfactual explanations’, in Proceedings of the 3rd Polish Conference on Artificial Intelligence PP-RAI, April 25-27, 2022, Gdynia, Poland, Gdynia Maritime University, 2022, pp. 81–84. [Online]. Available: https://wydawnictwo.umg.edu.pl/pp-rai2022/pdfs/19_pp-rai-2022-028.pdf

[352]

C. Magalhaes, J. Araujo, and A. Sardinha, ‘MARE: an Active Learning Approach for Requirements Classification’, in 2021 IEEE 29th International Requirements Engineering Conference (RE), Los Alamitos, CA, USA: IEEE Computer Society, Sep. 2021, pp. 516–521. doi: 10.1109/RE51729.2021.9714537.

[353]

M. Maouche, B. M. L. Srivastava, N. Vauquier, A. Bellet, M. Tommasi, and E. Vincent, ‘Enhancing speech privacy with slicing’, in Interspeech 2022, Sep. 2022.

[354]

F. R. Marco Alberti Riccardo Zese and E. Lamma, ‘An Iterative Fixpoint Semantics for MKNF Hybrid Knowledge Bases with Function Symbols’, CoRR, vol. abs/2208.03092, 2022.

[355]

E. Marconato, A. Passerini, and S. Teso, ‘GlanceNets: Interpretabile, Leak-proof Concept-based Models’, NeurIPS foundation, 2022.

[356]

G. Mariani, A. Monreale, and F. Naretto, ‘Privacy Risk Assessment of Individual Psychometric Profiles’, in Discovery Science – 24th International Conference, DS 2021, Halifax, NS, Canada, October 11-13, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 12986. Springer, 2021, pp. 411–421. doi: 10.1007/978-3-030-88942-5_32.

[357]

E. Marquer, S. Alsaidi, A. Decker, P.-A. Murena, and M. Couceiro, ‘A Deep Learning Approach to Solving Morphological Analogies’, in Case-Based Reasoning Research and Development – 30th International Conference, ICCBR 2022, Nancy, France, September 12-15, 2022, Proceedings, 2022, pp. 159–174.

[358]

E. Marquer, P.-A. Murena, and M. Couceiro, ‘Transferring Learned Models of Morphological Analogy’, in ATA@ICCBR2022 – Analogies: from Theory to Applications (ATA@ICCBR2022), Nancy, France, 2022. [Online]. Available: https://hal.inria.fr/hal-03783959

[359]

G. Marra, S. Dumancic, R. Manhaeve, and L. D. Raedt, ‘From Statistical Relational to Neural Symbolic Artificial Intelligence: a Survey’, CoRR, vol. abs/2108.11451, 2021, [Online]. Available: https://arxiv.org/abs/2108.11451

[360]

F. Martínez-Plumed, P. Barredo, S. O. Heigeartaigh, and J. Hernández-Orallo, ‘Research community dynamics behind popular AI benchmarks’, Nature Machine Intelligence, vol. 3, no. 7, pp. 581–589, 2021.

[361]

L. A. Martinez-Vaquero, F. C. Santos, and V. Trianni, ‘Signalling boosts the evolution of cooperation in repeated group interactions’, Journal of the Royal Society Interface, vol. 17, no. 172, p. 20200635, 2021, doi: 10.1098/rsif.2020.0635.

[362]

R. Massidda and D. Bacciu, ‘Knowledge-Driven Interpretation of Convolutional Neural Networks’, in ECML/PKDD (1), in Lecture Notes in Computer Science, vol. 13713. Springer, 2022, pp. 356–371. doi: 10.1007/978-3-031-26387-3_22.

[363]

R. Massidda, A. Geiger, T. Icard, and D. Bacciu, ‘Causal Abstraction with Soft Interventions’, in Proceedings of the Second Conference on Causal Learning and Reasoning, in Proceedings of Machine Learning Research, vol. 213. PMLR, Apr. 2023, pp. 68–87.

[364]

Y. Mehta et al., ‘NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy’, in International Conference on Learning Representations, 2022.

[365]

F. Meneguzzi and R. F. Pereira, ‘A Survey on Goal Recognition as Planning’, in IJCAI, 2021.

[366]

G. Menguy, S. Bardin, N. Lazaar, and A. Gotlieb, ‘Automated Program Analysis: Revisiting Precondition Inference through Constraint Acquisition’, in IJCAI, 2022. doi: 10.24963/ijcai.2022/260.

[367]

C. Metta et al., ‘Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning’, International Journal of Data Science and Analytics, 2023, doi: 10.1007/s41060-023-00401-z.

[368]

C. Metta, R. Guidotti, Y. Yin, P. Gallinari, and S. Rinzivillo, ‘Exemplars and Counterexemplars Explanations for Image Classifiers, Targeting Skin Lesion Labeling’, in IEEE Symposium on Computers and Communications, ISCC 2021, Athens, Greece, September 5-8, 2021, IEEE, 2021, pp. 1–7. doi: 10.1109/ISCC53001.2021.9631485.

[369]

M. M. Michelangelo Diligenti Francesco Giannini, Marco Gori and G. Marra, ‘A Constraint-Based Approach to Learning and Reasoning’, in Neuro-Symbolic Artificial Intelligence: The State of the Art, vol. 342, in Frontiers in Artificial Intelligence and Applications, vol. 342. , IOS Press, 2021, pp. 192–213.

[370]

A. Micheli and A. Valentini, ‘Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning’, in AAAI, 2021.

[371]

E. Misino, G. Marra, and E. Sansone, ‘VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming’, in Neural Information Processing Systems (NeurIPS), 2022.

[372]

M. Mittelmann, A. Herzig, and L. Perrussel, ‘Epistemic Reasoning About Rationality and Bids in Auctions’, in Logics in Artificial Intelligence – 17th European Conference, JELIA 2021, Virtual Event, May 17-20, 2021, Proceedings, in Lecture Notes in Computer Science, vol. 12678. Springer, 2021, pp. 116–130. [Online]. Available: https://doi.org/10.1007/978-3-030-75775-5\_9

[373]

M. Mittelmann, B. Maubert, A. Murano, and L. Perrussel, ‘Automated Synthesis of Mechanisms’, in IJCAI, ijcai.org, 2022, pp. 426–432.

[374]

M. Mittelmann, B. Maubert, A. Murano, and L. Perrussel, ‘Synthesis of Mechanisms with Strategy Logic (short paper)’, in ICTCS, in CEUR Workshop Proceedings. CEUR-WS.org, 2022.

[375]

E. Montero, J. Grujic, E. Fernandez Domingos, and T. Lenaerts, ‘Inferring strategies from observations in long iterated Prisoner’s dilemma experiments’, Scientific Reports, vol. 12, no. 1, 2022.

[376]

E. Montero-Porras, T. Lenaerts, R. Gallotti, and J. Grujic, ‘Fast deliberation is related to unconditional behaviour in iterated Prisoners’ Dilemma experiments’, Scientific Reports, vol. 12, no. 1, 2022.

[377]

N. Montes, M. Luck, N. Osman, O. Rodrigues, and C. Sierra, ‘Combining theory of mind and abductive reasoning in agent-oriented programming’, Autonomous Agents and Multi-Agent Systems, vol. 37, no. 2, 2023, doi: 10.1007/s10458-023-09613-w.

[378]

N. Montes, N. Osman, and C. Sierra, ‘Enabling Game-Theoretical Analysis of Social Rules’, in CCIA, in Frontiers in Artificial Intelligence and Applications, vol. 339. IOS Press, 2021, pp. 90–99.

[379]

N. Montes, N. Osman, and C. Sierra, ‘Combining Theory of Mind and Abduction for Cooperation Under Imperfect Information’, in Multi-Agent Systems, Springer International Publishing, 2022, pp. 294–311. doi: 10.1007/978-3-031-20614-6_17.

[380]

N. Montes, N. Osman, and C. Sierra, ‘A computational model of Ostrom’s Institutional Analysis and Development framework’, Artificial Intelligence, vol. 311, p. 103756, Oct. 2022, doi: 10.1016/j.artint.2022.103756.

[381]

N. Montes, N. Osman, and C. Sierra, ‘A Computational Model of Ostrom’s Institutional Analysis and Development Framework (Extended Abstract)’, in IJCAI, ijcai.org, 2023, pp. 6937–6941. [Online]. Available: https://doi.org/10.24963/ijcai.2023/786

[382]

N. Montes and C. Sierra, ‘Value-Alignment Equilibrium in Multiagent Systems’, in TAILOR, in Lecture Notes in Computer Science, vol. 12641. Springer, 2020, pp. 189–204. doi: 10.1007/978-3-030-73959-1_17.

[383]

N. Montes and C. Sierra, ‘Value-Guided Synthesis of Parametric Normative Systems’, in AAMAS, ACM, 2021, pp. 907–915.

[384]

N. Montes and C. Sierra, ‘Synthesis and Properties of Optimally Value-Aligned Normative Systems’, Journal of Artificial Intelligence Research, vol. 74, pp. 1739–1774, Aug. 2022, doi: 10.1613/jair.1.13487.

[385]

J. Á. Morell and E. Alba, ‘Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices’, Future Generation Computer Systems, vol. 133, pp. 53–67, 2022, doi: https://doi.org/10.1016/j.future.2022.02.024.

[386]

J. Á. Morell, Z. A. Dahi, F. Chicano, G. Luque, and E. Alba, ‘Optimising Communication Overhead in Federated Learning Using NSGA-II”, booktitle=”Applications of Evolutionary Computation’, J. L. Jiménez Laredo, J. I. Hidalgo, and K. O. Babaagba, Eds., Cham: Springer International Publishing, 2022, pp. 317–333.

[387]

P. Morettin, A. Passerini, and S. Teso, ‘Co-creating Platformer Levels with Constrained Adversarial Networks’, Workshop on Human-AI Co-Creation with Generative Models at IUI 2021, 2021.

[388]

P. Morettin, P. Zuidberg Dos Martires, S. Kolb, and A. Passerini, ‘Hybrid probabilistic inference with logical and algebraic constraints: a survey’, in Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021.

[389]

D. Mutzari, Y. Aumann, and S. Kraus, ‘Robust Solutions for Multi-Defender Stackelberg Security Games’, Proceedings of IJCAI-22, 2022.

[390]

A. Nadi, N. Yorke-Smith, H. van Lint, L. Tavasszy, and M. Snelder, ‘A Data-driven Time-Dependent Routing and Scheduling for Activity-Based Freight Transport Modelling’, in Proceedings of the 11th Triennial Symposium on Transportation Analysis (TRISTAN XI 2022), Mauritius, Jun. 2022.

[391]

A. Neves and A. Sardinha, ‘Learning to Cooperate with Completely Unknown Teammates’, in Progress in Artificial Intelligence, Cham: Springer International Publishing, 2022.

[392]

A. Nikolikj, S. Dzeroski, M. A. Muñoz, C. Doerr, P. Korosec, and T. Eftimov, ‘Algorithm Instance Footprint: Separating Easily Solvable and Challenging Problem Instances’, in GECCO, ACM, 2023, pp. 529–537.

[393]

M. Norel, M. Ka\lczyński, I. Pińskwar, K. Krawiec, and Z. W. Kundzewicz, ‘Climate Variability Indices—A Guided Tour’, Geosciences, vol. 11, no. 3, 2021, doi: 10.3390/geosciences11030128.

[394]

M. Norel, K. Krawiec, and Z. W. Kundzewicz, ‘Machine Learning Modeling of Climate Variability Impact on River Runoff’, Water, vol. 13, no. 9, 2021, doi: 10.3390/w13091177.

[395]

T. Nowak and P. Skrzypczyński, ‘Geometry-Aware Keypoint Network: Accurate Prediction of Point Features in Challenging Scenario’, in 17th Conference on Computer Science and Intelligence Systems (FedCSIS), 2022, pp. 191–200. doi: 10.15439/2022F145.

[396]

D. Numeroso and D. Bacciu, ‘MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks’, CoRR, vol. abs/2104.08060, 2021, [Online]. Available: https://arxiv.org/abs/2104.08060

[397]

S. Ondrcková, R. Barták, P. Bercher, and G. Behnke, ‘Lessons Learned from the CYK Algorithm for Parsing-based Verification of Hierarchical Plans’, in Proceedings of the Thirty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023, AAAI Press, 2023. doi: 10.32473/flairs.36.133196.

[398]

S. Ondrcková, R. Barták, P. Bercher, and G. Behnke, ‘On the Impact of Grounding on HTN Plan Verification via Parsing’, in Proceedings of the 15th International Conference on Agents and Artificial Intelligence, ICAART 2023, Volume 3, Lisbon, Portugal, February 22-24, 2023, A. P. Rocha, L. Steels, and H. J. van den Herik, Eds., SCITEPRESS, 2023, pp. 92–99. doi: 10.5220/0011618400003393.

[399]

L. Oneto et al., ‘Towards learning trustworthily, automatically, and with guarantees on graphs: An overview’, Neurocomputing, vol. 493, pp. 217–243, 2022, doi: 10.1016/j.neucom.2022.04.072.

[400]

X. Oriol, G. D. Giacomo, M. Estañol, and E. Teniente, ‘Embedding Reactive Behavior into Artifact-centric Business Process Models’, FGCS, vol. 117, pp. 97–110, 2021, doi: 10.1016/j.future.2020.11.018.

[401]

G. Ottervanger, M. Baratchi, and H. H. Hoos, ‘MultiETSC: automated machine learning for early time series classification’, Data Min. Knowl. Discov., vol. 35, no. 6, pp. 2602–2654, 2021.

[402]

M. Oudshoorn, T. Koppenberg, and N. Yorke-Smith, ‘Optimisation of Annual Planned Rail Maintenance’, Computer-Aided Civil and Infrastructure Engineering, vol. e-print ahead of press, 2021.

[403]

A. Overwater and N. Yorke-Smith, ‘Agent-Based Simulation of Short-Term Peer-to-Peer Rentals: Evidence from the Amsterdam Housing Market’, Environment and Planning B: Urban Analytics and City Science, vol. 49, no. 1, pp. 223–240, 2022.

[404]

J. Pan et al., ‘GradMDM: Adversarial Attack on Dynamic Networks’, IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 45, no. 09, pp. 11374–11381, Sep. 2023, doi: 10.1109/TPAMI.2023.3263619.

[405]

J. Pan et al., ‘Progressive Channel-Shrinking Network’, IEEE Transactions on Multimedia, 2023, doi: 10.1109/TMM.2023.3291197.

[406]

J. Pan, Q. Zheng, Z. Fan, H. Rahmani, Q. Ke, and J. Liu, ‘GradAuto: energy-oriented attack on dynamic neural networks’, in ECCV 2022, European Computer Vision Association, 2022.

[407]

C. Panigutti, A. Perotti, A. Panisson, P. Bajardi, and D. Pedreschi, ‘FairLens: Auditing black-box clinical decision support systems’, Information Processing & Management, vol. 58, no. 5, p. 102657, 2021.

[408]

K. Pantůčková and R. Barták, ‘Using Earley Parser for Recognizing Totally Ordered Hierarchical Plans’, in The proceedings of the Twenty-sixth European Conference on Artificial Intelligence (ECAI 2023), IOS Press, 2023, pp. 1819–1826. doi: 10.3233/FAIA230469.

[409]

K. Pantucková, S. Ondrcková, and R. Barták, ‘Parsing-Based Recognition of Hierarchical Plans Using the Grammar Constraint’, in Proceedings of the Thirty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023, AAAI Press, 2023. doi: 10.32473/flairs.36.133367.

[410]

C. Papadopoulos, Y. Panagakis, M. Koubarakis, and M. Nicolaou, ‘Efficient Learning of Multiple NLP Tasks via Collective Weight Factorization on BERT’, in NAACL-HLT (Findings), Association for Computational Linguistics, 2022, pp. 882–890.

[411]

T. Parr and G. Pezzulo, ‘Understanding, Explanation, and Active Inference’, Frontiers in Systems Neuroscience, vol. 15, 2021.

[412]

G. Paterson-Jones, G. Casini, and T. Meyer, ‘A Boolean Extension of KLM-Style Conditional Reasoning’, in Southern African Conference for Artificial Intelligence Research, Springer, 2021, pp. 236–252.

[413]

P. Pavlík, V. Rozinajová, and A. B. Ezzeddine, ‘Radar-Based Volumetric Precipitation Nowcasting: A 3D Convolutional Neural Network with U-Net Architecture’, in Proceedings of the Second Workshop on Complex Data Challenges in Earth Observation (CDCEO 2022), CEUR-WS.org, 2022, p. 8.

[414]

G. Pellegrini, A. Tibo, P. Frasconi, A. Passerini, and M. Jaeger, ‘Learning Aggregation Functions’, in Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021.

[415]

R. F. Pereira, F. Fuggitti, F. Meneguzzi, and G. D. Giacomo, ‘Temporally Extended Goal Recognition in Fully Observable Non-Deterministic Domain Models’, CoRR, vol. abs/2306.08680, 2023.

[416]

R. F. Pereira, N. Oren, and F. Meneguzzi, ‘Landmark-Based Approaches for Goal Recognition as Planning’, in ICAPS, Journal Track, 2021.

[417]

R. F. Pereira, A. G. Pereira, F. Messa, and G. D. Giacomo, ‘Iterative Depth-First Search for FOND Planning’, in ICAPS, AAAI Press, 2022, pp. 90–99.

[418]

M. Petkovic, M. Ceci, G. Pio, B. Skrlj, K. Kersting, and S. Dzeroski, ‘Relational tree ensembles and feature rankings’, Knowl. Based Syst., vol. 251, p. 109254, 2022, doi: 10.1016/j.knosys.2022.109254.

[419]

M. Petkovic, S. Dzeroski, and D. Kocev, ‘Feature ranking for semi-supervised learning’, Mach. Learn., 2022, doi: 10.1007/s10994-022-06181-0.

[420]

M. Petkovic, D. Kocev, B. Skrlj, and S. Dzeroski, ‘Ensemble- and distance-based feature ranking for unsupervised learning’, Int. J. Intell. Syst., vol. 36, no. 7, pp. 3068–3086, 2021, doi: 10.1002/int.22390.

[421]

M. G. Pietro Barbiero Gabriele Ciravegna, Francesco Giannini, Pietro Liò and S. Melacci, ‘Entropy-Based Logic Explanations of Neural Networks’, in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 – March 1, 2022, AAAI Press, 2022, pp. 6046–6054.

[422]

G. L. J. Pingen et al., ‘Talking Trucks: Decentralized Collaborative Multi-Agent Order Scheduling for Self-Organizing Logistics’, in Proceedings of the 32nd International Conference on Automated Planning and Scheduling (ICAPS’22), Singapore (virtual), Jun. 2022.

[423]

K. Pluciński and H. Klimczak, ‘GHOST at SemEval-2021 Task 5: Is explanation all you need?’, in Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), Association for Computational Linguistics, 2021, pp. 852–859. doi: 10.18653/v1/2021.semeval-1.114.

[424]

Š. Pócoš, I. Bečková, and I. Farkaš, ‘Examining the Proximity of Adversarial Examples to Class Manifolds in Deep Networks’, in arXiv, arXiv, 2022, pp. 1–10.

[425]

Š. Pócoš, I. Bečková, T. Kuzma, and I. Farkaš, ‘Assessment of Manifold Unfolding in Trained Deep Neural Network Classifiers’, in Trustworthy AI – Integrating Learning, Optimization and Reasoning, Springer International Publishing, 2021, pp. 93–103.

[426]

F. Pommerening, T. Keller, V. Halasi, J. Seipp, S. Sievers, and M. Helmert, ‘Dantzig-Wolfe Decomposition for Cost Partitioning’, in ICAPS, 2021.

[427]

J. Potoniec, ‘Is the Proof Length a Good Indicator of Hardness for Reason-able Embeddings?’, in NeSy, in CEUR Workshop Proceedings, vol. 3432. CEUR-WS.org, 2023, pp. 150–161.

[428]

F. Pratesi, R. Trasarti, and F. Giannotti, ‘Ethics in smart information systems’, in Ethical Evidence and Policymaking, Policy Press, 2022, pp. 162–184.

[429]

P. T. Rajendran, H. Espinoza, A. Delaborde, and C. Mraidha, ‘Human-in-the-Loop Learning Methods Toward Safe DL-Based Autonomous Systems: A Review’, in Computer Safety, Reliability, and Security. SAFECOMP 2021 Workshops, Springer International Publishing, 2021, pp. 251–264.

[430]

P. T. Rajendran, H. Espinoza, A. Delaborde, and C. Mraidha, ‘Human-in-the-loop Learning for Safe Exploration through Anomaly Prediction and Intervention’, in SafeAI@AAAI, in CEUR Workshop Proceedings, vol. 3087. CEUR-WS.org, 2022.

[431]

H. Rakotoarison, L. Milijaona, A. Rasoanaivo, M. Sebag, and M. Schoenauer, ‘Learning Meta-features for AutoML’, in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=DTkEfj0Ygb8&referrer=%5Bthe%20profile%20of%20Herilalaina%20Rakotoarison%5D(%2Fprofile%3Fid%3D~Herilalaina_Rakotoarison1)

[432]

T. Reinboth and I. Farkaš, ‘Ultimate Grounding of Abstract Concepts: A Graded Account’, in Journal of Cognition, Ubiquity Press, 2022, pp. 1–21.

[433]

A. Renaux, C. Terwagne, M. Cochez, I. Tiddi, A. Nowé, and T. Lenaerts, ‘A knowledge graph approach to predict and interpret disease-causing gene interactions’, BMC Bioinform., vol. 24, no. 1, p. 324, 2023.

[434]

M. Resta, A. Monreale, and D. Bacciu, ‘Occlusion-Based Explanations in Deep Recurrent Models for Biomedical Signals’, Entropy, vol. 23, no. 8, 2021.

[435]

J. G. Ribeiro, M. Faria, A. Sardinha, and F. S. Melo, ‘Helping People on the Fly: Ad Hoc Teamwork for Human-Robot Teams’, in Progress in Artificial Intelligence, G. Marreiros, F. S. Melo, N. Lau, H. Lopes Cardoso, and L. P. Reis, Eds., Cham: Springer International Publishing, 2021, pp. 635–647.

[436]

C. E. Risso, C. Cintrano, J. Toutouh, and S. Nesmachnow, ‘Exact Approach for Electric Vehicle Charging Infrastructure Location: A Real Case Study in Málaga, Spain’, in Smart Cities – 4th Ibero-American Congress, ICSC-Cities 2021, Cancún,Mexico, November 29 – December 1, 2021, Revised Selected Papers, S. Nesmachnow and L. Hernández-Callejo, Eds., in Communications in Computer and Information Science, vol. 1555. Springer, 2021, pp. 42–57. doi: 10.1007/978-3-030-96753-6_4.

[437]

G. L. Rodrigo Gil-Merino Enrique Alba, Jose Francisco Chicano, Zakaria Abdelmoiz Dahi, ‘Quantum Computing: Present and Prospects’, in 19th Conference of the Spanish Association for Artificial Intelligence (CAEPIA), S. M. Enrique Alba Francisco Chicano, Gabriel Luque, Rodrigo Gil-Merino, Carlos Cotta, David Camacho, Manuel Ojeda-Aciego, Susana Montes, Alicia Troncoso, Jose Riquelme, Eva Onaindia, Maria Jose del Jesus, Jose Antonio Gamez, Alberto Bugarin, Mar Marcos, Agapito Ledezma, Juan Pedro Llerena, Javier Echanobe, Jamal Toutouh, Ed., CAEPIA, 2021, pp. 947–952.

[438]

I. D. Rodriguez, B. Bonet, J. Romero, and H. Geffner, ‘Learning First-Order Representations for Planning from Black-Box States: New Results’, in KR, 2021.

[439]

I. D. Rodriguez, B. Bonet, S. Sardiña, and H. Geffner, ‘Flexible FOND Planning with Explicit Fairness Assumptions’, in ICAPS, 2021, pp. 290–298.

[440]

M. Rodriguez-Soto, M. López-Sánchez, and J. A. Rodríguez-Aguilar, ‘Multi-Objective Reinforcement Learning for Designing Ethical Environments’, in IJCAI, ijcai.org, 2021, pp. 545–551.

[441]

A. Ronca and G. D. Giacomo, ‘Efficient PAC Reinforcement Learning in Regular Decision Processes’, in IJCAI, 2021.

[442]

A. Ronca and G. D. Giacomo, ‘Efficient PAC Reinforcement Learning in Regular Decision Processes’, in PRL Workshop, 2021.

[443]

A. Ronca, M. Kaminski, B. C. Grau, and I. Horrocks, ‘The Delay and Window Size Problems in Rule-Based Stream Reasoning’, Artificial Intelligence, p. 103668, 2022, doi: https://doi.org/10.1016/j.artint.2022.103668.

[444]

A. Ronca, N. A. Knorozova, and G. D. Giacomo, ‘Automata Cascades: Expressivity and Sample Complexity’, in AAAI, AAAI Press, 2023, pp. 9588–9595.

[445]

A. Ronca, G. P. Licks, and G. D. Giacomo, ‘Markov Abstractions for PAC Reinforcement Learning in Non-Markov Decision Processes’, in IJCAI, 2022. doi: 10.24963/ijcai.2022/473.

[446]

A. Rumież, M. Szeląg, B. Świt-Jankowska, and P. Marciniak, ‘EVALUATION OF MODERN HERITAGE ASSETS IN POZNAN USING MONOTONIC DECISION RULES’, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-M-2–2023, pp. 1373–1378, 2023, doi: 10.5194/isprs-archives-XLVIII-M-2-2023-1373-2023.

[447]

F. Sabbatini and R. Calegari, ‘Symbolic Knowledge Extraction from Opaque Machine Learning Predictors: GridREx & PEDRO’, in 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Haifa, Israel: IJCAI Organization, Aug. 2022, pp. 554–563. doi: 10.24963/kr.2022/57.

[448]

M. Salerno, R. Fuentetaja, and J. Seipp, ‘Eliminating Redundant Actions from Plans using Classical Planning’, in Proceedings of the Twentieth International Conference on Principles of Knowledge Representation and Reasoning (KR 2023), 2023.

[449]

E. Sansone, ‘LSB: Local Self-Balancing MCMC in Discrete Spaces’, in International Conference on Machine Learning (ICML), 2022, pp. 19205–19220.

[450]

L. R. de A. Santos, F. Meneguzzi, R. F. Pereira, and A. G. Pereira, ‘An LP-Based Approach for Goal Recognition as Planning’, in AAAI, 2021.

[451]

P. M. Santos, J. G. Ribeiro, A. Sardinha, and F. S. Melo, ‘Ad Hoc Teamwork in the Presence of Non-stationary Teammates’, in Progress in Artificial Intelligence, G. Marreiros, F. S. Melo, N. Lau, H. Lopes Cardoso, and L. P. Reis, Eds., Cham: Springer International Publishing, 2021, pp. 648–660.

[452]

L. Scavuzzo et al., ‘Learning to Branch with Tree MDPs’, in Proceedings of the 36th International Conference on Neural Information Processing Systems (NeurIPS’22), New Orleans, LA, USA, Nov. 2022.

[453]

L. Schmerler, N. Hazon, and S. Kraus, ‘Strategic voting in the context of stable-matching of teams’, in International Symposium on Algorithmic Game Theory, Springer, 2022, pp. 562–579.

[454]

J. F. Schumann, A. R. Srinivasan, J. Kober, G. Markkula, and A. Zgonnikov, ‘Using Models Based on Cognitive Theory to Predict Human Behavior in Traffic: A Case Study’, in IEEE 26\textsuperscriptth International Conference on Intelligent Transportation Systems (ITSC), 2023.

[455]

R. Seccia, S. de Wolf, L. Kok, and N. Yorke-Smith, ‘A Machine Learning Approach for 3D Load Feasibility Prediction’, in 32nd European Conference on Operational Research (EURO’22), Espoo, Finland, Jul. 2022.

[456]

J. Segovia-Aguas, S. J. Celorrio, L. Sebastiá, and A. Jonsson, ‘Scaling-up generalized planning as heuristic search with landmarks’, in Proceedings of the International Symposium on Combinatorial Search, 2022, pp. 171–179.

[457]

J. Segovia-Aguas, S. Jiménez Celorrio, and A. Jonsson, ‘Computing Programs for Generalized Planning as Heuristic Search (Extended Abstract)’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed., International Joint Conferences on Artificial Intelligence Organization, Jul. 2022, pp. 5334–5338. doi: 10.24963/ijcai.2022/746.

[458]

J. Segovia-Aguas, S. Jiménez, and A. Jonsson, ‘Generalized Planning as Heuristic Search’, in ICAPS, 2021, pp. 569–577.

[459]

J. Seipp, ‘Online Saturated Cost Partitioning for Classical Planning’, in ICAPS, 2021.

[460]

J. Seipp, T. Keller, and M. Helmert, ‘Saturated Post-hoc Optimization for Classical Planning’, in AAAI, 2021.

[461]

J. M. Sempere, ‘On the Languages Accepted by Watson-Crick Finite Automata with Delays’, Mathematics, vol. 9, no. 8, 2021.

[462]

M. Setzu, R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti, ‘GLocalX – From Local to Global Explanations of Black Box AI Models’, Artif. Intell., vol. 294, p. 103457, 2021, doi: 10.1016/j.artint.2021.103457.

[463]

A. S. Shamsabadi et al., ‘Differentially private speaker anonymization’, Proceedings on Privacy Enhancing Technologies, vol. 2023, no. 1, Jan. 2023.

[464]

S. Sievers, D. Gnad, and Á. Torralba, ‘Additive Pattern Databases for Decoupled Search’, in SOCS, 2022, pp. 180–189.

[465]

S. Sievers and M. Helmert, ‘Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems’, JAIR, vol. 71, pp. 781–883, 2021.

[466]

S. Sievers and M. Wehrle, ‘On Weak Stubborn Sets in Classical Planning’, in IJCAI, 2021, pp. 4167–4174.

[467]

T. Silva Filho, H. Song, M. Perello-Nieto, R. Santos-Rodriguez, M. Kull, and P. Flach, ‘Classifier calibration: a survey on how to assess and improve predicted class probabilities’, Machine Learning, vol. 112, pp. 3211–3260, 2023, doi: 10.1007/s10994-023-06336-7.

[468]

J. Simko, P. Racsko, M. Tomlein, M. Hanakova, R. Moro, and M. Bielikova, ‘A Study of Fake News Reading and Annotating in Social Media Context’, in New Review of Hypermedia and Multimedia, Taylor & Francis, 2021, pp. 97–127.

[469]

J. Simko et al., ‘Towards Continuous Automatic Audits of Social Media Adaptive Behavior and its Role in Misinformation Spreading’, in Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, Association for Computing Machinery, 2021, pp. 411–414.

[470]

A. Singh, N. Lipovetzky, M. Ramirez, and J. Segovia-Aguas, ‘Approximate Novelty Search’, in ICAPS, 2021, pp. 349–357.

[471]

B. Skrlj, S. Dzeroski, N. Lavrac, and M. Petkovic, ‘ReliefE: feature ranking in high-dimensional spaces via manifold embeddings’, Mach. Learn., vol. 111, no. 1, pp. 273–317, 2022, doi: 10.1007/s10994-021-05998-5.

[472]

L. D. Smet, P. Z. D. Martires, R. Manhaeve, G. Marra, A. Kimmig, and L. D. Raedt, ‘Neural probabilistic logic programming in discrete-continuous domains’, in UAI, in Proceedings of Machine Learning Research, vol. 216. PMLR, 2023, pp. 529–538.

[473]

K. Sokol and P. Flach, ‘You Only Write Thrice: Creating Documents, Computational Notebooks and Presentations From a Single Source’, in Beyond static papers: Rethinking how we share scientific understanding in ML-ICLR 2021 workshop, 2021.

[474]

M. de Souza, M. Ritt, M. López-Ibáñez, and L. P. Cáceres, ‘ACVIZ: A tool for the visual analysis of the configuration of algorithms with irace’, Operations Research Perspectives, vol. 8, p. 100186, 2021, doi: https://doi.org/10.1016/j.orp.2021.100186.

[475]

M. D. Souza, M. Ritt, and M. López-Ibáñez, ‘Capping Methods for the Automatic Configuration of Optimization Algorithms’, Computers & Operations Research, vol. 139, p. 105615, 2022, doi: https://doi.org/10.1016/j.cor.2021.105615.

[476]

G. Spallitta, G. Masina, P. Morettin, A. Passerini, and R. Sebastiani, ‘SMT-based Weighted Model Integration with Structure Awareness’, in UAI, 2022.

[477]

D. Speck, P. Höft, D. Gnad, and J. Seipp, ‘Finding Matrix Multiplication Algorithms with Classical Planning’, in ICAPS, 2023, pp. 411–416.

[478]

D. Speck and J. Seipp, ‘New Refinement Strategies for Cartesian Abstractions’, in ICAPS, 2022, pp. 348–352.

[479]

I. Srba et al., ‘Auditing YouTube’s Recommendation Algorithm for Misinformation Filter Bubbles’, ACM Trans. Recomm. Syst., vol. 1, no. 1, Jan. 2023, doi: 10.1145/3568392.

[480]

I. Srba et al., ‘Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims’, in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, 2022, pp. 2949–2959.

[481]

J.-J. van der Steeg, M. Oudshoorn, and N. Yorke‐Smith, ‘Berth planning and real‐time disruption recovery: a simulation study for a tidal port’, Flexible Services and Manufacturing Journal, 2022, doi: https://doi.org/10.1007/s10696-022-09473-8.

[482]

M. Steinmetz et al., ‘Debugging a Policy: Automatic Action-Policy Testing in AI Planning’, in ICAPS, 2022, pp. 353–361.

[483]

U. Straccia and G. Casini, ‘A Minimal Deductive System for RDFS with Negative Statements’, in Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, Aug. 2022, pp. 351–361. doi: 10.24963/kr.2022/35.

[484]

S. Ståhlberg, B. Bonet, and H. Geffner, ‘Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits’, in ICAPS, 2022, pp. 629–637.

[485]

S. Ståhlberg, B. Bonet, and H. Geffner, ‘Learning Generalized Policies without Supervision Using GNNs’, in KR, 2022.

[486]

S. Ståhlberg, B. Bonet, and H. Geffner, ‘Learning General Policies with Policy Gradient Methods’, in Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2023, pp. 647–657.

[487]

S. Ståhlberg, G. Francès, and J. Seipp, ‘Learning Generalized Unsolvability Heuristics for Classical Planning’, in IJCAI, 2021, pp. 4175–4181.

[488]

A. Suárez-Hernández, A. Andriella, A. Taranović, J. Segovia-Aguas, C. Torras, and G. Alenyà, ‘Automatic learning of cognitive exercises for socially assistive robotics’, in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), IEEE, 2021, pp. 139–146.

[489]

A. Suárez-Hernández, J. Segovia-Aguas, C. Torras, and G. Alenyà, ‘Online Action Recognition’, in AAAI, 2021.

[490]

Z. Sun, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, and J. Liu, ‘Human Action Recognition From Various Data Modalities: A Review’, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2022, doi: 10.1109/TPAMI.2022.3183112.

[491]

S. A. Suryanarayana, D. Sarne, and S. Kraus, ‘Explainability in mechanism design: recent advances and the road ahead’, in European Conference on Multi-Agent Systems, Springer, 2022, pp. 364–382.

[492]

P. Švec, Š. Balogh, and M. Homola, ‘Experimental Evaluation of Description Logic Concept Learning Algorithms for Static Malware Detection’, in Proceedings of the 7th International Conference on Information Systems Security and Privacy – Volume 1: ForSE, SciTePress, 2021, pp. 792–799.

[493]

M. Szeląg and R. Słowiński, ‘Dominance-based Rough Set Approach to Bank Customer Satisfaction Analysis’, in Proceedings of the 3rd Polish Conference on Artificial Intelligence PP-RAI, April 25-27, 2022, Gdynia, Poland, Gdynia Maritime University, 2022, pp. 147–150. [Online]. Available: https://wydawnictwo.umg.edu.pl/pp-rai2022/pdfs/34_pp-rai-2022-109.pdf

[494]

M. Szeląg and R. Słowiński, ‘Customer churn analytics using monotonic rules’, in Progress in Polish Artificial Intelligence Research 4, Wydawnictwo Politechniki Łódzkiej, 2023, pp. 287–292. [Online]. Available: http://repozytorium.p.lodz.pl/handle/11652/4822

[495]

M. Tamajka, M. Vesely, and M. Simko, ‘Optimizing Post-hoc Explainability Algorithm for Finding Faithful and Understandable Explanations for a Combination of Model, Task and Data’, in Proceedings of Workshop on explainable artificial intelligence XAI at IJCAI2022, International Joint Conferences on Artificial Intelligence Organization, 2022, pp. 103–110.

[496]

P. R. Telang, M. P. Singh, and N. Yorke-Smith, ‘Maintenance of Social Commitments in Multiagent Systems’, in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 11369–11377. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/17355

[497]

P. Telang, M. P. Singh, and N. Yorke-Smith, ‘Maintenance Commitments: Conception, Semantics, and Coherence’, Artificial Intelligence, vol. 324, p. 103993, 2023.

[498]

A. Termos, S. Picascia, and N. Yorke-Smith, ‘Agent-Based Simulation of West Asian Urban Dynamics: Impact of Refugees’, J. Artif. Soc. Soc. Simul., vol. 24, no. 1, 2021, doi: 10.18564/jasss.4472.

[499]

A. Termos and N. Yorke-Smith, ‘Urbanism and Geographic Crises: A Micro-Simulation Lens on Beirut’, Urban Planning, vol. 7, no. 1, pp. 87–100, 2022.

[500]

S. Teso et al., ‘Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens’, CoRR, vol. abs/2205.10157, 2022, doi: 10.48550/arXiv.2205.10157.

[501]

S. Teso and A. Vergari, ‘Efficient and Reliable Probabilistic Interactive Learning with Structured Outputs’, The AAAI-22 Workshop on Interactive Machine Learning, 2022.

[502]

T. Thorbjarnarson and N. Yorke-Smith, ‘Optimal training of integer-valued neural networks with mixed integer programming’, PLoS ONE, vol. 18, no. 2, p. e0261029, 2023, doi: https://doi.org/10.1371/journal.pone.0261029.

[503]

J. Tianjiao Li Qiuhong Ke, Hossein Rahmani, Rui En Ho, Henghui Ding, ‘Else-Net: Elastic Semantic Network for Continual Action Recognition from Skeleton Data’, in International Conference on Computer Vision, 2021.

[504]

J. L. Tianjiao Li Lin Geng Foo, Qiuhong Ke, Hossein Rahmani, Anran Wang, Jinghua Wang, ‘Dynamic Spatio-Temporal Specialization Learning for Fine-Grained Action Recognition’, in European Conference on Computer Vision, 2022.

[505]

M. Tiger, D. Bergström, A. Norrstig, and F. Heintz, ‘Enhancing Lattice-Based Motion Planning With Introspective Learning and Reasoning’, IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4385–4392, 2021.

[506]

R. Tinós, M. Przewozniczek, D. Whitley, and F. Chicano, ‘Genetic Algorithm with Linkage Learning’, in Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 981–989. doi: 10.1145/3583131.3590349.

[507]

M. Tomlein et al., ‘An Audit of Misinformation Filter Bubbles on YouTube: Bubble Bursting and Recent Behavior Changes’, in Proceedings of the 15th ACM Conference on Recommender Systems, Association for Computing Machinery, 2021, pp. 1–11.

[508]

M. Tomlein et al., ‘Black-box Audit of YouTube’s Video Recommendation: Investigation of Misinformation Filter Bubble Dynamics (Extended Abstract)’, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, International Joint Conferences on Artificial Intelligence Organization, 2022, pp. 5349–5353.

[509]

Á. Torralba, J. Seipp, and S. Sievers, ‘Automatic Instance Generation for Classical Planning’, in ICAPS, 2021.

[510]

J. Toutouh and E. Alba, ‘A Low Cost IoT Cyber-Physical System for Vehicle and Pedestrian Tracking in a Smart Campus’, Sensors, vol. 22, no. 17, 2022, doi: 10.3390/s22176585.

[511]

J. Toutouh, F. Chicano, and R. Gil-Merino, ‘Distribution of Police Patrols as a Covering Problem in Smart Cities: Fuengirola Use Case’, in Smart Cities – 5th Ibero-American Congress, ICSC-CITIES 2022, Cuenca, Ecuador, November 28-30, 2022, Revised Selected Papers, S. Nesmachnow and L. Hernández-Callejo, Eds., in Communications in Computer and Information Science, vol. 1706. Springer, 2022, pp. 46–60. doi: 10.1007/978-3-031-28454-0_4.

[512]

J. Toutouh, I. Lebrusán, and C. Cintrano, ‘Using Open Data to Analyze Public Bus Service from an Age Perspective: Melilla Case’, in Smart Cities – 4th Ibero-American Congress, ICSC-Cities 2021, Cancún, Mexico, November 29 – December 1, 2021, Revised Selected Papers, S. Nesmachnow and L. Hernández-Callejo, Eds., in Communications in Computer and Information Science, vol. 1555. Springer, 2021, pp. 223–239. doi: 10.1007/978-3-030-96753-6_16.

[513]

Y. Trabelsi, A. Adiga, S. Kraus, S. Ravi, and D. J. Rosenkrantz, ‘Resource Sharing Through Multi-Round Matchings’, in Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 11681–11690. [Online]. Available: https://arxiv.org/abs/2211.17199

[514]

A. Trapasso, S. Santilli, L. Iocchi, and F. Patrizi, ‘A formalization of multi-agent planning with explicit agent representation’, in SAC, ACM, 2023, pp. 816–823. doi: 10.1145/3555776.3577753.

[515]

M. Trinh, M. Behery, M. Emara, G. Lakemeyer, S. Storms, and C. Brecher, ‘Dynamics Modeling of Industrial Robots Using Transformer Networks’, in Sixth IEEE International Conference on Robotic Computing, IRC 2022, Naples, Italy, December 5-7, 2022, IEEE, 2022, pp. 164–171. [Online]. Available: https://doi.org/10.1109/IRC55401.2022.00035

[516]

J. von Tschammer, R. Mattmüller, and D. Speck, ‘Loopless Top-k Planning’, in ICAPS, 2022, pp. 380–384.

[517]

I. Uhliarik, ‘Enhancing and Evaluating the Product Fuzzy DPLL Solver’, SN Comput. Sci., vol. 3, no. 5, p. 388, 2022, doi: 10.1007/s42979-022-01192-z.

[518]

I. Ullah et al., ‘Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification’, in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, in NIPS’22. 2022.

[519]

E. Umili, E. Antonioni, F. Riccio, R. Capobianco, D. Nardi, and G. D. Giacomo, ‘Learning a Symbolic Planning Domain through the Interaction with Continuous Environments’, in PRL Workshop, 2021.

[520]

E. Umili, R. Capobianco, and G. D. Giacomo, ‘Grounding LTLf Specifications in Image Sequences’, in KR, 2023, pp. 668–678.

[521]

I. D. F. V Policastro D. Righelli, A. Carissimo, L. Cutillo, ‘ROBustness In Network (robin): an R Package for Comparison and Validation of Communities’, The R Journal, vol. 13, no. 1, pp. 292–309, 2021.

[522]

A. Valenti, S. Berti, and D. Bacciu, ‘Calliope – A Polyphonic Music Transformer’, CoRR, vol. abs/2107.05546, 2021, [Online]. Available: https://arxiv.org/abs/2107.05546

[523]

D. van Bokkem, M. van den Hemel, S. Dumančić, and N. Yorke-Smith, ‘Embedding a Long Short-Term Memory Network in a Constraint Programming Framework for Tomato Greenhouse Optimisation’, in Proceedings of the 35th International Conference on Innovative Applications of Artificial Intelligence (IAAI’23), Washington, DC, USA, Feb. 2023.

[524]

K. van der Blom, H. H. Hoos, C. Luo, and J. G. Rook, ‘Sparkle: Towards Accessible Meta-Algorithmics for Improving the State of the Art in Solving Challenging Problems’, IEEE Transactions on Evolutionary Computation, 2022, doi: 10.1109/TEVC.2022.3215013.

[525]

K. van der Blom, A. Serban, H. Hoos, and J. Visser, ‘AutoML Adoption in ML Software’, in 8th ICML Workshop on Automated Machine Learning, 2021.

[526]

F. Ventola, D. S. Dhami, and K. Kersting, ‘Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits’, in Inductive Logic Programming – 30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings, 2021, pp. 251–265.

[527]

A. Vergari, Y. Choi, A. Liu, S. Teso, and G. V. den Broeck, ‘A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-theoretic Queries’, in NeurIPS, Curran Associates, 2021.

[528]

A. Vermeulen, R. Manhaeve, and G. Marra, ‘An Experimental Overview of Neural-Symbolic Systems’, in ILP, in Lecture Notes in Artificial Intelligence. Springer, 2023.

[529]

G. Vidal, ‘Explanations as Programs in Probabilistic Logic Programming’, in FLOPS, in Lecture Notes in Computer Science, vol. 13215. Springer, 2022, pp. 205–223.

[530]

T. Viehmann, T. Hofmann, and G. Lakemeyer, ‘Transforming Robotic Plans with Timed Automata to Solve Temporal Platform Constraints’, in IJCAI, ijcai.org, 2021, pp. 2083–2089.

[531]

F. Vital, M. Vasco, A. Sardinha, and F. S. Melo, ‘Perceive, Represent, Generate: Translating Multimodal Information to Robotic Motion Trajectories’, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022.

[532]

B. Wexler, E. Sarafian, and S. Kraus, ‘Analyzing and Overcoming Degradation in Warm-Start Reinforcement Learning’, in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022, pp. 4048–4055.

[533]

E. Wiegel and N. Yorke-Smith, ‘No Hope for First-Time Buyers? Towards Agent-Based Market Analysis of Urban Housing Balance’, in Working Notes of AAMAS’22 Workshop on Agent Based Modelling of Urban Systems, Auckland, New Zealand (virtual), May 2022.

[534]

J. Wietrzykowski and P. Skrzypczy\’nski, ‘On the descriptive power of LiDAR intensity images for segment-based loop closing in 3-D SLAM’, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2021.

[535]

T. Winters, G. Marra, R. Manhaeve, and L. D. Raedt, ‘DeepStochLog: Neural Stochastic Logic Programming’, in AAAI, AAAI Press, 2022, pp. 10090–10100.

[536]

S. Xiao, J. Li, S. Zhu, Y. Shi, G. Pu, and M. Vardi, ‘On-the-fly Synthesis for LTL over Finite Traces’, in AAAI, 2021.

[537]

R. Xu-Darme, G. Quénot, Z. Chihani, and M.-C. Rousset, ‘PARTICUL: Part Identification with Confidence Measure Using Unsupervised Learning’, in ICPR Workshops (3), in Lecture Notes in Computer Science, vol. 13645. Springer, 2022, pp. 173–187. doi: 10.1007/978-3-031-37731-0_14.

[538]

S. Yan, C. White, Y. Savani, and F. Hutter, ‘NAS-Bench-x11 and the Power of Learning Curves’, in Advances in Neural Information Processing Systems, 2021.

[539]

W.-C. Yang, A. Jain, L. D. Raedt, and W. Meert, ‘Parameter Learning in ProbLog with Annotated Disjunctions’, in IDA, in Lecture Notes in Computer Science, vol. 13205. Springer, 2022, pp. 378–391.

[540]

W.-C. Yang, J.-F. Raskin, and L. De Raedt, ‘Lifted Model Checking for Relational MDPs’, Machine Learning, 2021.

[541]

K. Yilmaz and N. Yorke-Smith, ‘A Study of Learning Search Approximation in Mixed Integer Branch and Bound: Node Selection in SCIP’, AI, vol. 2, no. 2, pp. 150–178, 2021.

[542]

J. L. Yunsheng Pang Qiuhong Ke, Hossein Rahmani, James Bailey, ‘IGFormer: Interaction Graph Transformer for Skeleton-based Human Interaction Recognition’, in European Conference on Computer Vision, 2022.

[543]

M. E. Zarlenga et al., ‘Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off’, in NeurIPS, 2022. [Online]. Available: http://papers.nips.cc/paper\_files/paper/2022/hash/867c06823281e506e8059f5c13a57f75-Abstract-Conference.html

[544]

M. Zecevic, D. S. Dhami, A. Karanam, S. Natarajan, and K. Kersting, ‘Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models’, in Advances in Neural Information Processing Systems, 2021.

[545]

G. Zervakis, E. Vincent, M. Couceiro, and M. Schoenauer, ‘On Refining BERT Contextualized Embeddings using Semantic Lexicons’, in ECML/PKDD2021 Workshop on Combination of Symbolic and Sub-symbolic Methods and their Applications, Sep. 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03318571

[546]

G. Zervakis, E. Vincent, M. Couceiro, M. Schoenauer, and E. Marquer, ‘An analogy based approach for solving target sense verification’, in 6th International Conference on Natural Language Processing and Information Retrieval, Dec. 2022.

[547]

Y. Zhao, Z. Gong, G. Wei, and R. Słowiński, ‘Consensus modeling with interactive utility and partial preorder of decision-makers, involving fairness and tolerant behavior’, Information Sciences, vol. 638, p. 118933, 2023, doi: https://doi.org/10.1016/j.ins.2023.118933.

[548]

S. Zhu and G. D. Giacomo, ‘Act for Your Duties but Maintain Your Rights’, in KR, 2022.

[549]

S. Zhu and G. D. Giacomo, ‘Synthesis of Maximally Permissive Strategies for LTLf Specifications’, in IJCAI, ijcai.org, 2022, pp. 2783–2789.

[550]

S. Zhu and G. D. Giacomo, ‘Act for Your Duties but Maintain Your Rights’, CoRR, vol. abs/2302.03384, 2023.

[551]

S. Zhu, L. M. Tabajara, G. Pu, and M. Y. Vardi, ‘On the Power of Automata Minimization in Temporal Synthesis’, in GandALF, in EPTCS, vol. 346. 2021, pp. 117–134.

[552]

P. K. Zuzana Hlávková Martin Homola and J. Pukancová, ‘An API for DL Abduction Solvers (Extended Abstract)’, in The Third Workshop on Explainable Logic-Based Knowledge Representation (XLoKR 2022), 2022